3,028 research outputs found

    PSPACE Bounds for Rank-1 Modal Logics

    Get PDF
    For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank-1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACE-bounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant proof-theoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way

    A Faster Tableau for CTL*

    Full text link
    There have been several recent suggestions for tableau systems for deciding satisfiability in the practically important branching time temporal logic known as CTL*. In this paper we present a streamlined and more traditional tableau approach built upon the author's earlier theoretical work. Soundness and completeness results are proved. A prototype implementation demonstrates the significantly improved performance of the new approach on a range of test formulas. We also see that it compares favourably to state of the art, game and automata based decision procedures.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    An Abstract Tableau Calculus for the Description Logic SHOI Using UnrestrictedBlocking and Rewriting

    Get PDF
    Abstract This paper presents an abstract tableau calculus for the description logic SHOI. SHOI is the extension of ALC with singleton concepts, role inverse, transitive roles and role inclusion axioms. The presented tableau calculus is inspired by a recently introduced tableau synthesis framework. Termination is achieved by a variation of the unrestricted blocking mechanism that immediately rewrites terms with respect to the conjectured equalities. This approach leads to reduced search space for decision procedures based on the calculus. We also discuss restrictions of the application of the blocking rule by means of additional side conditions and/or additional premises.

    Modal mu-calculi

    Get PDF
    corecore