3,457 research outputs found

    Table Structure Extraction with Bi-directional Gated Recurrent Unit Networks

    Full text link
    Tables present summarized and structured information to the reader, which makes table structure extraction an important part of document understanding applications. However, table structure identification is a hard problem not only because of the large variation in the table layouts and styles, but also owing to the variations in the page layouts and the noise contamination levels. A lot of research has been done to identify table structure, most of which is based on applying heuristics with the aid of optical character recognition (OCR) to hand pick layout features of the tables. These methods fail to generalize well because of the variations in the table layouts and the errors generated by OCR. In this paper, we have proposed a robust deep learning based approach to extract rows and columns from a detected table in document images with a high precision. In the proposed solution, the table images are first pre-processed and then fed to a bi-directional Recurrent Neural Network with Gated Recurrent Units (GRU) followed by a fully-connected layer with soft max activation. The network scans the images from top-to-bottom as well as left-to-right and classifies each input as either a row-separator or a column-separator. We have benchmarked our system on publicly available UNLV as well as ICDAR 2013 datasets on which it outperformed the state-of-the-art table structure extraction systems by a significant margin.Comment: Proceedings of the 15th International Conference on Document Analysis and Recognition (ICDAR) 2019, Sydney, Australi

    Quality-Gated Convolutional LSTM for Enhancing Compressed Video

    Full text link
    The past decade has witnessed great success in applying deep learning to enhance the quality of compressed video. However, the existing approaches aim at quality enhancement on a single frame, or only using fixed neighboring frames. Thus they fail to take full advantage of the inter-frame correlation in the video. This paper proposes the Quality-Gated Convolutional Long Short-Term Memory (QG-ConvLSTM) network with bi-directional recurrent structure to fully exploit the advantageous information in a large range of frames. More importantly, due to the obvious quality fluctuation among compressed frames, higher quality frames can provide more useful information for other frames to enhance quality. Therefore, we propose learning the "forget" and "input" gates in the ConvLSTM cell from quality-related features. As such, the frames with various quality contribute to the memory in ConvLSTM with different importance, making the information of each frame reasonably and adequately used. Finally, the experiments validate the effectiveness of our QG-ConvLSTM approach in advancing the state-of-the-art quality enhancement of compressed video, and the ablation study shows that our QG-ConvLSTM approach is learnt to make a trade-off between quality and correlation when leveraging multi-frame information. The project page: https://github.com/ryangchn/QG-ConvLSTM.git.Comment: Accepted to IEEE International Conference on Multimedia and Expo (ICME) 201

    DivGraphPointer: A Graph Pointer Network for Extracting Diverse Keyphrases

    Full text link
    Keyphrase extraction from documents is useful to a variety of applications such as information retrieval and document summarization. This paper presents an end-to-end method called DivGraphPointer for extracting a set of diversified keyphrases from a document. DivGraphPointer combines the advantages of traditional graph-based ranking methods and recent neural network-based approaches. Specifically, given a document, a word graph is constructed from the document based on word proximity and is encoded with graph convolutional networks, which effectively capture document-level word salience by modeling long-range dependency between words in the document and aggregating multiple appearances of identical words into one node. Furthermore, we propose a diversified point network to generate a set of diverse keyphrases out of the word graph in the decoding process. Experimental results on five benchmark data sets show that our proposed method significantly outperforms the existing state-of-the-art approaches.Comment: Accepted to SIGIR 201
    • …
    corecore