40,653 research outputs found

    Table Search Using a Deep Contextualized Language Model

    Full text link
    Pretrained contextualized language models such as BERT have achieved impressive results on various natural language processing benchmarks. Benefiting from multiple pretraining tasks and large scale training corpora, pretrained models can capture complex syntactic word relations. In this paper, we use the deep contextualized language model BERT for the task of ad hoc table retrieval. We investigate how to encode table content considering the table structure and input length limit of BERT. We also propose an approach that incorporates features from prior literature on table retrieval and jointly trains them with BERT. In experiments on public datasets, we show that our best approach can outperform the previous state-of-the-art method and BERT baselines with a large margin under different evaluation metrics.Comment: Accepted at SIGIR 2020 (Long

    CEDR: Contextualized Embeddings for Document Ranking

    No full text
    Although considerable attention has been given to neural ranking architectures recently, far less attention has been paid to the term representations that are used as input to these models. In this work, we investigate how two pretrained contextualized language modes (ELMo and BERT) can be utilized for ad-hoc document ranking. Through experiments on TREC benchmarks, we find that several existing neural ranking architectures can benefit from the additional context provided by contextualized language models. Furthermore, we propose a joint approach that incorporates BERT's classification vector into existing neural models and show that it outperforms state-of-the-art ad-hoc ranking baselines. We call this joint approach CEDR (Contextualized Embeddings for Document Ranking). We also address practical challenges in using these models for ranking, including the maximum input length imposed by BERT and runtime performance impacts of contextualized language models

    CEDR: Contextualized Embeddings for Document Ranking

    Get PDF
    Although considerable attention has been given to neural ranking architectures recently, far less attention has been paid to the term representations that are used as input to these models. In this work, we investigate how two pretrained contextualized language models (ELMo and BERT) can be utilized for ad-hoc document ranking. Through experiments on TREC benchmarks, we find that several existing neural ranking architectures can benefit from the additional context provided by contextualized language models. Furthermore, we propose a joint approach that incorporates BERT's classification vector into existing neural models and show that it outperforms state-of-the-art ad-hoc ranking baselines. We call this joint approach CEDR (Contextualized Embeddings for Document Ranking). We also address practical challenges in using these models for ranking, including the maximum input length imposed by BERT and runtime performance impacts of contextualized language models.Comment: Appeared in SIGIR 2019, 4 page

    Deeper Text Understanding for IR with Contextual Neural Language Modeling

    Full text link
    Neural networks provide new possibilities to automatically learn complex language patterns and query-document relations. Neural IR models have achieved promising results in learning query-document relevance patterns, but few explorations have been done on understanding the text content of a query or a document. This paper studies leveraging a recently-proposed contextual neural language model, BERT, to provide deeper text understanding for IR. Experimental results demonstrate that the contextual text representations from BERT are more effective than traditional word embeddings. Compared to bag-of-words retrieval models, the contextual language model can better leverage language structures, bringing large improvements on queries written in natural languages. Combining the text understanding ability with search knowledge leads to an enhanced pre-trained BERT model that can benefit related search tasks where training data are limited.Comment: In proceedings of SIGIR 201

    Contextualized Word Representations for Reading Comprehension

    Full text link
    Reading a document and extracting an answer to a question about its content has attracted substantial attention recently. While most work has focused on the interaction between the question and the document, in this work we evaluate the importance of context when the question and document are processed independently. We take a standard neural architecture for this task, and show that by providing rich contextualized word representations from a large pre-trained language model as well as allowing the model to choose between context-dependent and context-independent word representations, we can obtain dramatic improvements and reach performance comparable to state-of-the-art on the competitive SQuAD dataset.Comment: 6 pages, 1 figure, NAACL 201

    A Deep Architecture for Semantic Matching with Multiple Positional Sentence Representations

    Full text link
    Matching natural language sentences is central for many applications such as information retrieval and question answering. Existing deep models rely on a single sentence representation or multiple granularity representations for matching. However, such methods cannot well capture the contextualized local information in the matching process. To tackle this problem, we present a new deep architecture to match two sentences with multiple positional sentence representations. Specifically, each positional sentence representation is a sentence representation at this position, generated by a bidirectional long short term memory (Bi-LSTM). The matching score is finally produced by aggregating interactions between these different positional sentence representations, through kk-Max pooling and a multi-layer perceptron. Our model has several advantages: (1) By using Bi-LSTM, rich context of the whole sentence is leveraged to capture the contextualized local information in each positional sentence representation; (2) By matching with multiple positional sentence representations, it is flexible to aggregate different important contextualized local information in a sentence to support the matching; (3) Experiments on different tasks such as question answering and sentence completion demonstrate the superiority of our model.Comment: Accepted by AAAI-201
    • …
    corecore