6,581 research outputs found

    PDF-Malware Detection: A Survey and Taxonomy of Current Techniques

    Get PDF
    Portable Document Format, more commonly known as PDF, has become, in the last 20 years, a standard for document exchange and dissemination due its portable nature and widespread adoption. The flexibility and power of this format are not only leveraged by benign users, but from hackers as well who have been working to exploit various types of vulnerabilities, overcome security restrictions, and then transform the PDF format in one among the leading malicious code spread vectors. Analyzing the content of malicious PDF files to extract the main features that characterize the malware identity and behavior, is a fundamental task for modern threat intelligence platforms that need to learn how to automatically identify new attacks. This paper surveys existing state of the art about systems for the detection of malicious PDF files and organizes them in a taxonomy that separately considers the used approaches and the data analyzed to detect the presence of malicious code. © Springer International Publishing AG, part of Springer Nature 2018

    Reviewer Integration and Performance Measurement for Malware Detection

    Full text link
    We present and evaluate a large-scale malware detection system integrating machine learning with expert reviewers, treating reviewers as a limited labeling resource. We demonstrate that even in small numbers, reviewers can vastly improve the system's ability to keep pace with evolving threats. We conduct our evaluation on a sample of VirusTotal submissions spanning 2.5 years and containing 1.1 million binaries with 778GB of raw feature data. Without reviewer assistance, we achieve 72% detection at a 0.5% false positive rate, performing comparable to the best vendors on VirusTotal. Given a budget of 80 accurate reviews daily, we improve detection to 89% and are able to detect 42% of malicious binaries undetected upon initial submission to VirusTotal. Additionally, we identify a previously unnoticed temporal inconsistency in the labeling of training datasets. We compare the impact of training labels obtained at the same time training data is first seen with training labels obtained months later. We find that using training labels obtained well after samples appear, and thus unavailable in practice for current training data, inflates measured detection by almost 20 percentage points. We release our cluster-based implementation, as well as a list of all hashes in our evaluation and 3% of our entire dataset.Comment: 20 papers, 11 figures, accepted at the 13th Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA 2016

    Malware Detection Module using Machine Learning Algorithms to Assist in Centralized Security in Enterprise Networks

    Get PDF
    Malicious software is abundant in a world of innumerable computer users, who are constantly faced with these threats from various sources like the internet, local networks and portable drives. Malware is potentially low to high risk and can cause systems to function incorrectly, steal data and even crash. Malware may be executable or system library files in the form of viruses, worms, Trojans, all aimed at breaching the security of the system and compromising user privacy. Typically, anti-virus software is based on a signature definition system which keeps updating from the internet and thus keeping track of known viruses. While this may be sufficient for home-users, a security risk from a new virus could threaten an entire enterprise network. This paper proposes a new and more sophisticated antivirus engine that can not only scan files, but also build knowledge and detect files as potential viruses. This is done by extracting system API calls made by various normal and harmful executable, and using machine learning algorithms to classify and hence, rank files on a scale of security risk. While such a system is processor heavy, it is very effective when used centrally to protect an enterprise network which maybe more prone to such threats.Comment: 6 page

    Extracting text from PostScript

    Get PDF
    We show how to extract plain text from PostScript files. A textual scan is inadequate because PostScript interpreters can generate characters on the page that do not appear in the source file. Furthermore, word and line breaks are implicit in the graphical rendition, and must be inferred from the positioning of word fragments. We present a robust technique for extracting text and recognizing words and paragraphs. The method uses a standard PostScript interpreter but redefines several PostScript operators, and simple heuristics are employed to locate word and line breaks. The scheme has been used to create a full-text index, and plain-text versions, of 40,000 technical reports (34 Gbyte of PostScript). Other text-extraction systems are reviewed: none offer the same combination of robustness and simplicity

    Hi, how can I help you?: Automating enterprise IT support help desks

    Full text link
    Question answering is one of the primary challenges of natural language understanding. In realizing such a system, providing complex long answers to questions is a challenging task as opposed to factoid answering as the former needs context disambiguation. The different methods explored in the literature can be broadly classified into three categories namely: 1) classification based, 2) knowledge graph based and 3) retrieval based. Individually, none of them address the need of an enterprise wide assistance system for an IT support and maintenance domain. In this domain the variance of answers is large ranging from factoid to structured operating procedures; the knowledge is present across heterogeneous data sources like application specific documentation, ticket management systems and any single technique for a general purpose assistance is unable to scale for such a landscape. To address this, we have built a cognitive platform with capabilities adopted for this domain. Further, we have built a general purpose question answering system leveraging the platform that can be instantiated for multiple products, technologies in the support domain. The system uses a novel hybrid answering model that orchestrates across a deep learning classifier, a knowledge graph based context disambiguation module and a sophisticated bag-of-words search system. This orchestration performs context switching for a provided question and also does a smooth hand-off of the question to a human expert if none of the automated techniques can provide a confident answer. This system has been deployed across 675 internal enterprise IT support and maintenance projects.Comment: To appear in IAAI 201

    Towards Adversarial Malware Detection: Lessons Learned from PDF-based Attacks

    Full text link
    Malware still constitutes a major threat in the cybersecurity landscape, also due to the widespread use of infection vectors such as documents. These infection vectors hide embedded malicious code to the victim users, facilitating the use of social engineering techniques to infect their machines. Research showed that machine-learning algorithms provide effective detection mechanisms against such threats, but the existence of an arms race in adversarial settings has recently challenged such systems. In this work, we focus on malware embedded in PDF files as a representative case of such an arms race. We start by providing a comprehensive taxonomy of the different approaches used to generate PDF malware, and of the corresponding learning-based detection systems. We then categorize threats specifically targeted against learning-based PDF malware detectors, using a well-established framework in the field of adversarial machine learning. This framework allows us to categorize known vulnerabilities of learning-based PDF malware detectors and to identify novel attacks that may threaten such systems, along with the potential defense mechanisms that can mitigate the impact of such threats. We conclude the paper by discussing how such findings highlight promising research directions towards tackling the more general challenge of designing robust malware detectors in adversarial settings
    corecore