361 research outputs found

    Failure Prognosis of Wind Turbine Components

    Get PDF
    Wind energy is playing an increasingly significant role in the World\u27s energy supply mix. In North America, many utility-scale wind turbines are approaching, or are beyond the half-way point of their originally anticipated lifespan. Accurate estimation of the times to failure of major turbine components can provide wind farm owners insight into how to optimize the life and value of their farm assets. This dissertation deals with fault detection and failure prognosis of critical wind turbine sub-assemblies, including generators, blades, and bearings based on data-driven approaches. The main aim of the data-driven methods is to utilize measurement data from the system and forecast the Remaining Useful Life (RUL) of faulty components accurately and efficiently. The main contributions of this dissertation are in the application of ALTA lifetime analysis to help illustrate a possible relationship between varying loads and generators reliability, a wavelet-based Probability Density Function (PDF) to effectively detecting incipient wind turbine blade failure, an adaptive Bayesian algorithm for modeling the uncertainty inherent in the bearings RUL prediction horizon, and a Hidden Markov Model (HMM) for characterizing the bearing damage progression based on varying operating states to mimic a real condition in which wind turbines operate and to recognize that the damage progression is a function of the stress applied to each component using data from historical failures across three different Canadian wind farms

    Spectrum sensing and occupancy prediction for cognitive machine-to-machine wireless networks

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfil ment of the requirements for the degree of Doctor of Philosophy (PhD)The rapid growth of the Internet of Things (IoT) introduces an additional challenge to the existing spectrum under-utilisation problem as large scale deployments of thousands devices are expected to require wireless connectivity. Dynamic Spectrum Access (DSA) has been proposed as a means of improving the spectrum utilisation of wireless systems. Based on the Cognitive Radio (CR) paradigm, DSA enables unlicensed spectrum users to sense their spectral environment and adapt their operational parameters to opportunistically access any temporally unoccupied bands without causing interference to the primary spectrum users. In the same context, CR inspired Machine-to-Machine (M2M) communications have recently been proposed as a potential solution to the spectrum utilisation problem, which has been driven by the ever increasing number of interconnected devices. M2M communications introduce new challenges for CR in terms of operational environments and design requirements. With spectrum sensing being the key function for CR, this thesis investigates the performance of spectrum sensing and proposes novel sensing approaches and models to address the sensing problem for cognitive M2M deployments. In this thesis, the behaviour of Energy Detection (ED) spectrum sensing for cognitive M2M nodes is modelled using the two-wave with dffi use power fading model. This channel model can describe a variety of realistic fading conditions including worse than Rayleigh scenarios that are expected to occur within the operational environments of cognitive M2M communication systems. The results suggest that ED based spectrum sensing fails to meet the sensing requirements over worse than Rayleigh conditions and consequently requires the signal-to-noise ratio (SNR) to be increased by up to 137%. However, by employing appropriate diversity and node cooperation techniques, the sensing performance can be improved by up to 11.5dB in terms of the required SNR. These results are particularly useful in analysing the eff ects of severe fading in cognitive M2M systems and thus they can be used to design effi cient CR transceivers and to quantify the trade-o s between detection performance and energy e fficiency. A novel predictive spectrum sensing scheme that exploits historical data of past sensing events to predict channel occupancy is proposed and analysed. This approach allows CR terminals to sense only the channels that are predicted to be unoccupied rather than the whole band of interest. Based on this approach, a spectrum occupancy predictor is developed and experimentally validated. The proposed scheme achieves a prediction accuracy of up to 93% which in turn can lead to up to 84% reduction of the spectrum sensing cost. Furthermore, a novel probabilistic model for describing the channel availability in both the vertical and horizontal polarisations is developed. The proposed model is validated based on a measurement campaign for operational scenarios where CR terminals may change their polarisation during their operation. A Gaussian approximation is used to model the empirical channel availability data with more than 95% confi dence bounds. The proposed model can be used as a means of improving spectrum sensing performance by using statistical knowledge on the primary users occupancy pattern

    Engineering evaluations and studies. Volume 3: Exhibit C

    Get PDF
    High rate multiplexes asymmetry and jitter, data-dependent amplitude variations, and transition density are discussed

    NILM techniques for intelligent home energy management and ambient assisted living: a review

    Get PDF
    The ongoing deployment of smart meters and different commercial devices has made electricity disaggregation feasible in buildings and households, based on a single measure of the current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming more and more widespread in recent years, as a consequence of the interest companies and consumers have in efficient energy consumption and management. This work presents a detailed review of NILM methods, focusing particularly on recent proposals and their applications, particularly in the areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the ability to determine the on/off status of certain devices can provide key information for making further decisions. As well as complementing previous reviews on the NILM field and providing a discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future research in these topics.Agência financiadora: Programa Operacional Portugal 2020 and Programa Operacional Regional do Algarve 01/SAICT/2018/39578 Fundação para a Ciência e Tecnologia through IDMEC, under LAETA: SFRH/BSAB/142998/2018 SFRH/BSAB/142997/2018 UID/EMS/50022/2019 Junta de Comunidades de Castilla-La-Mancha, Spain: SBPLY/17/180501/000392 Spanish Ministry of Economy, Industry and Competitiveness (SOC-PLC project): TEC2015-64835-C3-2-R MINECO/FEDERinfo:eu-repo/semantics/publishedVersio

    Design of efficient constrained codes and parity-check codes for perpendicular magnetic recording channels

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore