18,779 research outputs found

    Aerospace Medicine and Biology. A continuing bibliography with indexes

    Get PDF
    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included

    Using computer vision in security applications

    Get PDF
    In this paper we present projects developed in the Computer Vision Laboratory, which address the issue of safety. First, we present the Internet Video Server (IVS) monitoring system [5] that sends live video stream over the Internet and enables remote camera control. Its extension GlobalView [1,6], which incorporates intuitive user interface for remote camera control, is based on panoramic image. Then we describe our method for automatic face detection [3] based on color segmentation and feature extraction. Finally, we introduce our SecurityAgent system [4] for automatic surveillance of observed location

    Crew interface with a telerobotic control station

    Get PDF
    A method for apportioning crew-telerobot tasks has been derived to facilitate the design of a crew-friendly telerobot control station. To identify the most appropriate state-of-the-art hardware for the control station, task apportionment must first be conducted to identify if an astronaut or a telerobot is best to execute the task and which displays and controls are required for monitoring and performance. Basic steps that comprise the task analysis process are: (1) identify space station tasks; (2) define tasks; (3) define task performance criteria and perform task apportionment; (4) verify task apportionment; (5) generate control station requirements; (6) develop design concepts to meet requirements; and (7) test and verify design concepts

    Human operator performance of remotely controlled tasks: Teleoperator research conducted at NASA's George C. Marshal Space Flight Center

    Get PDF
    The capabilities within the teleoperator laboratories to perform remote and teleoperated investigations for a wide variety of applications are described. Three major teleoperator issues are addressed: the human operator, the remote control and effecting subsystems, and the human/machine system performance results for specific teleoperated tasks

    Roving vehicle motion control Quarterly report, 1 Mar. - 31 May 1967

    Get PDF
    System and subsystem requirements for remote control of roving space vehicle motio

    Earth orbital teleoperator system man-machine interface evaluation

    Get PDF
    The teleoperator system man-machine interface evaluation develops and implements a program to determine human performance requirements in teleoperator systems

    Semi-Supervised First-Person Activity Recognition in Body-Worn Video

    Get PDF
    Body-worn cameras are now commonly used for logging daily life, sports, and law enforcement activities, creating a large volume of archived footage. This paper studies the problem of classifying frames of footage according to the activity of the camera-wearer with an emphasis on application to real-world police body-worn video. Real-world datasets pose a different set of challenges from existing egocentric vision datasets: the amount of footage of different activities is unbalanced, the data contains personally identifiable information, and in practice it is difficult to provide substantial training footage for a supervised approach. We address these challenges by extracting features based exclusively on motion information then segmenting the video footage using a semi-supervised classification algorithm. On publicly available datasets, our method achieves results comparable to, if not better than, supervised and/or deep learning methods using a fraction of the training data. It also shows promising results on real-world police body-worn video

    Motion-based remote control device for interaction with multimedia content

    Get PDF
    This dissertation describes the development and implementation of techniques to enhance the accuracy of low-complexity lters, making them suitable for remote control devices in consumer electronics. The evolution veri ed in the last years, on multimedia contents, available for consumers in Smart TVs and set-top-boxes, is not raising the expected interest from users, and one of the pointed reasons for this nding is the user interface. Although most current pointing devices rely on relative rotation increments, absolute orientation allows for a more intuitive use and interaction. This possibility is explored in this work as well as the interaction with multimedia contents through gestures. Classical accurate fusion algorithms are computationally intensive, therefore their implementation in low-energy consumption devices is a challenging task. To tackle this problem, a performance study was carried, comparing a relevant set of professional commercial of-the-shelf units, with the developed low-complexity lters in state-of-the-art Magnetic, Angular Rate, Gravity (MARG) sensors. Part of the performance evaluation tests are carried out under harsh conditions to observe the algorithms response in a nontrivial environment. The results demonstrate that the implementation of low-complexity lters using low-cost sensors, can provide an acceptable accuracy in comparison with the more complex units/ lters. These results pave the way for faster adoption of absolute orientation-based pointing devices in interactive multimedia applications, which includes hand-held, battery-operated devices
    corecore