32,973 research outputs found

    A Non-Local Structure Tensor Based Approach for Multicomponent Image Recovery Problems

    Full text link
    Non-Local Total Variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the Structure Tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the non-local variations, jointly for the different components, through various 1,p\ell_{1,p} matrix norms with p1p \ge 1. To facilitate the choice of the hyper-parameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented thanks to the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for multispectral and hyperspectral images. The results demonstrate the interest of introducing a non-local structure tensor regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods

    Improving Image Restoration with Soft-Rounding

    Full text link
    Several important classes of images such as text, barcode and pattern images have the property that pixels can only take a distinct subset of values. This knowledge can benefit the restoration of such images, but it has not been widely considered in current restoration methods. In this work, we describe an effective and efficient approach to incorporate the knowledge of distinct pixel values of the pristine images into the general regularized least squares restoration framework. We introduce a new regularizer that attains zero at the designated pixel values and becomes a quadratic penalty function in the intervals between them. When incorporated into the regularized least squares restoration framework, this regularizer leads to a simple and efficient step that resembles and extends the rounding operation, which we term as soft-rounding. We apply the soft-rounding enhanced solution to the restoration of binary text/barcode images and pattern images with multiple distinct pixel values. Experimental results show that soft-rounding enhanced restoration methods achieve significant improvement in both visual quality and quantitative measures (PSNR and SSIM). Furthermore, we show that this regularizer can also benefit the restoration of general natural images.Comment: 9 pages, 6 figure

    Variational models for multiplicative noise removal

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 자연과학대학 수리과학부, 2017. 8. 강명주.This dissertation discusses a variational partial differential equation (PDE) models for restoration of images corrupted by multiplicative Gamma noise. The two proposed models are suitable for heavy multiplicative noise which is often seen in applications. First, we propose a total variation (TV) based model with local constraints. The local constraint involves multiple local windows which is related a spatially adaptive regularization parameter (SARP). In addition, convergence analysis such as the existence and uniqueness of a solution is also provided. Second model is an extension of the first one using nonconvex version of the total generalized variation (TGV). The nonconvex TGV regularization enables to efficiently denoise smooth regions, without staircasing artifacts that appear on total variation regularization based models, and to conserve edges and details.1. Introduction 1 2. Previous works 6 2.1 Variational models for image denoising 6 2.2.1 Convex and nonconvex regularizers 6 2.2.2 Variational models for multiplicative noise removal 8 2.2 Proximal linearized alternating direction method of multipliers 10 3. Proposed models 13 3.1 Proposed model 1 :exp TV model with SARP 13 3.1.1 Derivation of our model 13 3.1.2 Proposed TV model with local constraints 16 3.1.3 A SARP algorithm for solving model (3.1.16) 27 3.1.4 Numerical results 32 3.2 Proposed model 2 :exp NTGV model with SARP 51 3.2.1 Proposed NTGV model 51 3.2.2 Updating rule for λ(x)\lambda(x) in (3.2.1) 52 3.2.3 Algorithm for solving the proposed model (3.2.1) 55 3.2.4 Numerical results 62 3.2.5 Selection of parameters 63 3.2.6 Image denoising 65 4. Conclusion 79Docto

    Hyperspectral Image Restoration via Total Variation Regularized Low-rank Tensor Decomposition

    Full text link
    Hyperspectral images (HSIs) are often corrupted by a mixture of several types of noise during the acquisition process, e.g., Gaussian noise, impulse noise, dead lines, stripes, and many others. Such complex noise could degrade the quality of the acquired HSIs, limiting the precision of the subsequent processing. In this paper, we present a novel tensor-based HSI restoration approach by fully identifying the intrinsic structures of the clean HSI part and the mixed noise part respectively. Specifically, for the clean HSI part, we use tensor Tucker decomposition to describe the global correlation among all bands, and an anisotropic spatial-spectral total variation (SSTV) regularization to characterize the piecewise smooth structure in both spatial and spectral domains. For the mixed noise part, we adopt the 1\ell_1 norm regularization to detect the sparse noise, including stripes, impulse noise, and dead pixels. Despite that TV regulariztion has the ability of removing Gaussian noise, the Frobenius norm term is further used to model heavy Gaussian noise for some real-world scenarios. Then, we develop an efficient algorithm for solving the resulting optimization problem by using the augmented Lagrange multiplier (ALM) method. Finally, extensive experiments on simulated and real-world noise HSIs are carried out to demonstrate the superiority of the proposed method over the existing state-of-the-art ones.Comment: 15 pages, 20 figure
    corecore