31,723 research outputs found

    Tumor suppressor genes

    Get PDF
    Tumour suppressor genes are a class of genes that have a crucial role in the genesis of neoplasia. These genes when transcribed and translated, result in the production of proteins that regulate the cell cycle, repair any DNA mutations and control apoptosis. When tumour suppressor genes are mutated, cells lose control and this leads to neoplastic growth. A good analogy is comparing a tumour suppressor gene with the brake pedal of a car. The tumour suppressor gene prevents the cell from dividing too quickly just as a brake keeps the car from going too fast.peer-reviewe

    Tumor Suppressor Genes

    Get PDF
    Functional evidence obtained from somatic cell fusion studies indicated that a group of genes from normal cells might replace or correct a defective function of cancer cells. Tumorigenesis that could be initiated by two mutations was established by the analysis of hereditary retinoblastoma, which led to the eventual cloning of RB1 gene. The two-hit hypothesis helped isolate many tumor suppressor genes (TSG) since then. More recently, the roles of haploinsufficiency, epigenetic control, and gene dosage effects in some TSGs, such as P53, P16 and PTEN, have been studied extensively. It is now widely recognized that deregulation of growth control is one of the major hallmarks of cancer biological capabilities, and TSGs play critical roles in many cellular activities through signaling transduction networks. This book is an excellent review of current understanding of TSGs, and indicates that the accumulated TSG knowledge has opened a new frontier for cancer therapies

    Spinophilin, a new tumor suppressor at 17q21

    Get PDF
    The scaffold protein spinophilin is a regulatory subunit of phosphatase 1a (PP1a) located at 17q21.33. This region is frequently associated with microsatellite instability and LOH and contains a relatively high density of known tumor suppressor genes (such as BRCA1), putative tumor suppressor genes, and several unidentified candidate tumor suppressor genes located distal to BRCA1.Peer reviewe

    Tumor suppressor genes

    Get PDF
    A tumor suppressor gene is a type of cancer gene that is created by loss-of function mutations. In contrast to the activating mutations that generate oncogenic alleles from proto-oncogene precursors, tumor suppressor genes, and the proteins they encode, are functionally inactivated by mutations

    Impact of decitabine on immunohistochemistry expression of the putative tumor suppressor genes FHIT, WWOX, FUS1 and PTEN in clinical tumor samples.

    Get PDF
    BackgroundSince tumor suppressor gene function may be lost through hypermethylation, we assessed whether the demethylating agent decitabine could increase tumor suppressor gene expression clinically. For fragile histidine triad (FHIT), WW domain-containing oxidoreductase (WWOX), fused in sarcoma-1 (FUS1) and phosphatase and tensin homolog (PTEN), immunohistochemistry scores from pre- and post-decitabine tumor biopsies (25 patients) were correlated with methylation of the long interspersed nuclear element-1 (LINE-1) repetitive DNA element (as a surrogate for global DNA methylation) and with tumor regression.ResultsWith negative staining pre-decitabine (score = 0), the number of patients converting to positive staining post-decitabine was 1 of 1 for FHIT, 3 of 6 for WWOX, 2 of 3 for FUS1 and 1 of 10 for PTEN. In tumors with low pre-decitabine tumor suppressor gene scores (≤150), expression was higher post-treatment in 8 of 8 cases for FHIT (P = 0.014), 7 of 17 for WWOX (P = 0.0547), 7 of 12 for FUS1 (P = 0.0726), and 1 of 16 for PTEN (P = 0.2034). If FHIT, WWOX and FUS1 were considered together, median pre- versus post-decitabine scores were 60 versus 100 (P = 0.0002). Overall, tumor suppressor gene expression change did not correlate with LINE-1 demethylation, although tumors converting from negative to positive had a median decrease in LINE-1 methylation of 24%, compared to 6% in those not converting (P = 0.069). Five of 15 fully evaluable patients had reductions in tumor diameter (range 0.2% to 33.4%). Of these, three had simultaneous increases in three tumor suppressor genes (including the two patients with the greatest tumor regression) compared to 2 of 10 with tumor growth (P = 0.25).ConclusionsIn tumors with low tumor suppressor gene expression, decitabine may be associated with increased expression of the tumor suppressor genes FHIT, FUS1, and WWOX, but not PTEN

    Epigenetics and Tumor Suppressor Genes

    Get PDF
    • …
    corecore