13 research outputs found

    A series facts controller as a voltage fluctuation mitigation equipment: an experimental investigation

    Get PDF
    This research project addresses the mitigation of voltage fluctuations using a series-connected power electronics-based controller, which belongs to the family of Flexible AC Transmission Systems (FACTS) controllers. These are emerging technologies which have been under continuous development for over a decade, and are now available to the electricity supply industry world-wide, helping to ameliorate a wide range of power system phenomena, to increase power transfers and stability margins. Voltage fluctuation is a complex phenomenon affecting adversely transmission and distribution networks. Bulky fluctuating load, wind farms and large induction motor are the major sources of voltage fluctuations. As the phenomenon propagates, it interacts with other voltage fluctuations contributed by different sources, and affecting neighbouring lighting circuits, giving raise to a phenomenon termed light flicker. To ameliorate such a problem, a well-coordinated operation of advanced voltage mitigation equipment, control strategy and specialised measurements instruments are required. Considerable progress has been made in voltage fluctuations mitigation using shunt FACTS controllers. However, very little work has been reported in tackling the very complex issue of mitigation of voltage fluctuation propagating in the network using series FACTS controllers. To advance this area of research, this project addresses the design and construction of a three-phase scaled-down TCSC prototype and a voltage fluctuations experimental environment, suitable for real-time hardware-in-the-loop testing. The research work carries out a fundamental study of TCSC resonances, which are termed resonance modes. It is found that a non-explicit resonance mode at a=90° exists, and it is termed intrinsic resonance mode. For a well-designed TCSC, only the fundamental and the intrinsic resonance mode should be active. To facilitate the design, a procedure has been identified, based in the synchronisation of resonance modes. To achieve mitigation successfully, a new tailor-made TCSC control strategy, named RT-DIMR, and a flexible virtual flickermeter based on the IEC-61000-4-15 standard are thoroughly developed and integrated under the same real-time computing platform. The RT-DIMR demonstrates its capability for controlling the TCSC under different voltage fluctuation conditions. The lEC-Flickermeter provides online flicker severity indices, information which may be used to asses whether or not the electrical network has been effectively improved. The aim of this research work is to experimentally evaluate the TCSC capabilities to mitigate travelling voltage fluctuations. A scaled-down network and voltage fluctuation sources are constructed to mimic a voltage fluctuations propagation environment. A comprehensive number of experiments are carried out to test the mitigation scheme under a wide range of conditions. The robustness and effectiveness of the mitigation schemes have been thoroughly demonstrated. The newly developed TCSC prototype, scaled-down testing environment and RT-DIMR control strategy recommend themselves not only as an imaginative voltage fluctuations mitigation research tool, but also as a general advanced FACTS research tool

    A review of UAV autonomous navigation in GPS-denied environments

    Get PDF
    Unmanned aerial vehicles (UAVs) have drawn increased research interest in recent years, leading to a vast number of applications, such as, terrain exploration, disaster assistance and industrial inspection. Unlike UAV navigation in outdoor environments that rely on GPS (Global Positioning System) for localization, indoor navigation cannot rely on GPS due to the poor quality or lack of signal. Although some reviewing papers particularly summarized indoor navigation strategies (e.g., Visual-based Navigation) or their specific sub-components (e.g., localization and path planning) in detail, there still lacks a comprehensive survey for the complete navigation strategies that cover different technologies. This paper proposes a taxonomy which firstly classifies the navigation strategies into Mapless and Map-based ones based on map usage and then, respectively categorizes the Mapless navigation into Integrated, Direct and Indirect approaches via common characteristics. The Map-based navigation is then split into Known Map/Spaces and Map-building via prior knowledge. In order to analyze these navigation strategies, this paper uses three evaluation metrics (Path Length, Deviation Rate and Exploration Efficiency) according to the common purposes of navigation to show how well they can perform. Furthermore, three representative strategies were selected and 120 flying experiments conducted in two reality-like simulated indoor environments to show their performances against the evaluation metrics proposed in this paper, i.e., the ratio of Successful Flight, the Mean time of Successful Flight, the Mean Length of Successful Flight, the Mean time of Flight, and the Mean Length of Flight. In comparison to the CNN-based Supervised Learning (directly maps visual observations to UAV controls) and the Frontier-based navigation (necessitates continuous global map generation), the experiments show that the CNN-based Distance Estimation for navigation trades off the ratio of Successful Flight and the required time and path length. Moreover, this paper identifies the current challenges and opportunities which will drive UAV navigation research in GPS-denied environments

    Mobile Robots

    Get PDF
    The objective of this book is to cover advances of mobile robotics and related technologies applied for multi robot systems' design and development. Design of control system is a complex issue, requiring the application of information technologies to link the robots into a single network. Human robot interface becomes a demanding task, especially when we try to use sophisticated methods for brain signal processing. Generated electrophysiological signals can be used to command different devices, such as cars, wheelchair or even video games. A number of developments in navigation and path planning, including parallel programming, can be observed. Cooperative path planning, formation control of multi robotic agents, communication and distance measurement between agents are shown. Training of the mobile robot operators is very difficult task also because of several factors related to different task execution. The presented improvement is related to environment model generation based on autonomous mobile robot observations

    Power Electronics in Renewable Energy Systems

    Get PDF

    Integration of Renewables in Power Systems by Multi-Energy System Interaction

    Get PDF
    This book focuses on the interaction between different energy vectors, that is, between electrical, thermal, gas, and transportation systems, with the purpose of optimizing the planning and operation of future energy systems. More and more renewable energy is integrated into the electrical system, and to optimize its usage and ensure that its full production can be hosted and utilized, the power system has to be controlled in a more flexible manner. In order not to overload the electrical distribution grids, the new large loads have to be controlled using demand response, perchance through a hierarchical control set-up where some controls are dependent on price signals from the spot and balancing markets. In addition, by performing local real-time control and coordination based on local voltage or system frequency measurements, the grid hosting limits are not violated

    Report on active and planned spacecraft and experiments

    Get PDF
    Information is presented, concerning active and planned spacecraft and experiments known to the National Space Science Data Center. The information included a wide range of disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represented the efforts and funding of individual countries as well as cooperative arrangements among different countries

    Air Traffic Management Abbreviation Compendium

    Get PDF
    As in all fields of work, an unmanageable number of abbreviations are used today in aviation for terms, definitions, commands, standards and technical descriptions. This applies in general to the areas of aeronautical communication, navigation and surveillance, cockpit and air traffic control working positions, passenger and cargo transport, and all other areas of flight planning, organization and guidance. In addition, many abbreviations are used more than once or have different meanings in different languages. In order to obtain an overview of the most common abbreviations used in air traffic management, organizations like EUROCONTROL, FAA, DWD and DLR have published lists of abbreviations in the past, which have also been enclosed in this document. In addition, abbreviations from some larger international projects related to aviation have been included to provide users with a directory as complete as possible. This means that the second edition of the Air Traffic Management Abbreviation Compendium includes now around 16,500 abbreviations and acronyms from the field of aviation

    LIPIcs, Volume 277, GIScience 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 277, GIScience 2023, Complete Volum
    corecore