37 research outputs found

    Product allocation and network configuration in global production networks – An integrated optimization approach

    Get PDF
    Driven by an increasing demand for individualized products and shorter product life-cycles, companies continuously extend their product portfolio. Simultaneously, companies expand into new markets to reach customers and to exploit varying location factors to reduce costs. Global production networks (GPNs) have to be adapted constantly to react to new circumstances and changes in the demand of products. To remain competitive, product allocation and production network configuration are essential. At the same time, companies face an increasing complexity while handling these tasks. This poses a challenge particularly for small and medium sized companies, which have limited planning capacities and management resources. Current literature describes optimization-based approaches for the integrated product allocation and network configuration of production networks. Yet, multi-objective models lack transparency of results and user friendliness. Therefore, this paper presents a multi-objective optimization model that incorporates flexibility and reconfiguration aspects to determine an optimal product allocation and network configuration of a GPN over a given planning horizon. The preemptive goal programming approach is used to identify Pareto-optimal solutions and to increase user friendliness. The subsequent verification, validation and post-optimality analysis combined in a structured process enables a wide range of companies to apply the approach. The model is successfully applied in the GPN of a special machine manufacturer, which produces high precision metrology machines. Due to its transparent approach for complex planning problems, the developed method provides a solid base for well-founded, objective decisions. Hence, the risk of costly errors in the planning phase is reduced

    Smart Industry - Better Management

    Get PDF
    The ebook edition of this title is Open Access and freely available to read online. Smart industry requires better management. As industrial and production systems are future-proofed, becoming smart and interconnected through use of new manufacturing and product technologies, work is advancing on improving product needs, volume, timing, resource efficiency, and cost, optimally using supply chains. Presenting innovative, evidence-based, and cutting-edge case studies, with new conceptualizations and viewpoints on management, Smart Industry, Better Management explores concepts in product systems, use of cyber physical systems, digitization, interconnectivity, and new manufacturing and product technologies. Contributions to this volume highlight the high degree of flexibility in people management, production, including product needs, volume, timing, resource efficiency and cost in being able to finely adjust to customer needs and make full use of supply chains for value creation. Smart Industry, Better Management illustrates how industry can enabled by a more network-centric approach, making use of the value of information and the latest available proven manufacturing techniques

    Geospatial Information Research: State of the Art, Case Studies and Future Perspectives

    Get PDF
    Geospatial information science (GI science) is concerned with the development and application of geodetic and information science methods for modeling, acquiring, sharing, managing, exploring, analyzing, synthesizing, visualizing, and evaluating data on spatio-temporal phenomena related to the Earth. As an interdisciplinary scientific discipline, it focuses on developing and adapting information technologies to understand processes on the Earth and human-place interactions, to detect and predict trends and patterns in the observed data, and to support decision making. The authors – members of DGK, the Geoinformatics division, as part of the Committee on Geodesy of the Bavarian Academy of Sciences and Humanities, representing geodetic research and university teaching in Germany – have prepared this paper as a means to point out future research questions and directions in geospatial information science. For the different facets of geospatial information science, the state of art is presented and underlined with mostly own case studies. The paper thus illustrates which contributions the German GI community makes and which research perspectives arise in geospatial information science. The paper further demonstrates that GI science, with its expertise in data acquisition and interpretation, information modeling and management, integration, decision support, visualization, and dissemination, can help solve many of the grand challenges facing society today and in the future

    COMPREHENSIVE FRAMEWORKS FOR DECISION MAKING SUPPORT IN MEDICAL EQUIPMENT MANAGEMENT

    Get PDF
    Throughout medical equipment life cycle, hospitals need to take decisions on medical equipment management based upon a set of different criteria. In fact, medical equipment acquisition, preventive maintenance, and replacement are considered the most important phases, accordingly a properly planned management for these issues is considered a key decision of medical equipment management. In this thesis, a set of frameworks were developed regarding acquisition, preventive maintenance, and replacement to improve management process of medical equipment. In practice, quality function deployment was proposed as a core method around which the frameworks were developed

    Cyber-Physical Systems Enabled By Unmanned Aerial System-Based Personal Remote Sensing: Data Mission Quality-Centric Design Architectures

    Get PDF
    In the coming 20 years, unmanned aerial data collection will be of great importance to many sectors of civilian life. Of these systems, Personal Remote Sensing (PRS) Small Unmanned Aerial Systems (sUASs), which are designed for scientic data collection, will need special attention due to their low cost and high value for farming, scientic, and search-andrescue uses, among countless others. Cyber-Physical Systems (CPSs: large-scale, pervasive automated systems that tightly couple sensing and actuation through technology and the environment) can use sUASs as sensors and actuators, leading to even greater possibilities for benet from sUASs. However, this nascent robotic technology presents as many problems as possibilities due to the challenges surrounding the abilities of these systems to perform safely and eectively for personal, academic, and business use. For these systems, whose missions are dened by the data they are sent to collect, safe and reliable mission quality is of highest importance. Much like the dawning of civil manned aviation, civilian sUAS ights demand privacy, accountability, and other ethical factors for societal integration, while safety of the civilian National Airspace (NAS) is always of utmost importance. While the growing popularity of this technology will drive a great effort to integrate sUASs into the NAS, the only long-term solution to this integration problem is one of proper architecture. In this research, a set of architectural requirements for this integration is presented: the Architecture for Ethical Aerial Information Sensing or AERIS. AERIS provides a cohesive set of requirements for any architecture or set of architectures designed for safe, ethical, accurate aerial data collection. In addition to an overview and showcase of possibilities for sUAS-enabled CPSs, specific examples of AERIS-compatible sUAS architectures using various aerospace design methods are shown. Technical contributions include specic improvements to sUAS payload architecture and control software, inertial navigation and complementary lters, and online energy and health state estimation for lithium-polymer batteries in sUAS missions. Several existing sUASs are proled for their ability to comply with AERIS, and the possibilities of AERIS data-driven missions overall is addressed
    corecore