94 research outputs found

    Using Pythagorean Fuzzy Sets (PFS) in Multiple Criteria Group Decision Making (MCGDM) Methods for Engineering Materials Selection Applications

    Get PDF
    The process of materials’ selection is very critical during the initial stages of designing manufactured products. Inefficient decision-making outcomes in the material selection process could result in poor quality of products and unnecessary costs. In the last century, numerous materials have been developed for manufacturing mechanical components in different industries. Many of these new materials are similar in their properties and performances, thus creating great challenges for designers and engineers to make accurate selections. Our main objective in this work is to assist decision makers (DMs) within the manufacturing field to evaluate materials alternatives and to select the best alternative for specific manufacturing purposes. In this research, new hybrid fuzzy Multiple Criteria Group Decision Making (MCGDM) methods are proposed for the material selection problem. The proposed methods tackle some challenges that are associated with the material selection decision making process, such as aggregating decision makers’ (DMs) decisions appropriately and modeling uncertainty. In the proposed hybrid models, a novel aggregation approach is developed to convert DMs crisp decisions to Pythagorean fuzzy sets (PFS). This approach gives more flexibility to DMs to express their opinions than the traditional fuzzy and intuitionistic sets (IFS). Then, the proposed aggregation approach is integrated with a ranking method to solve the Pythagorean Fuzzy Multi Criteria Decision Making (PFMCGDM) problem and rank the material alternatives. The ranking methods used in the hybrid models are the Pythagorean Fuzzy TOPSIS (The Technique for Order of Preference by Similarity to Ideal Solution) and Pythagorean Fuzzy COPRAS (COmplex PRoportional Assessment). TOPSIS and COPRAS are selected based on their effectiveness and practicality in dealing with the nature of material selection problems. In the aggregation approach, the Sugeno Fuzzy measure and the Shapley value are used to fairly distribute the DMs weight in the Pythagorean Fuzzy numbers. Additionally, new functions to calculate uncertainty from DMs recommendations are developed using the Takagai-Sugeno approach. The literature reveals some work on these methods, but to our knowledge, there are no published works that integrate the proposed aggregation approach with the selected MCDM ranking methods under the Pythagorean Fuzzy environment for the use in materials selection problems. Furthermore, the proposed methods might be applied, due to its novelty, to any MCDM problem in other areas. A practical validation of the proposed hybrid PFMCGDM methods is investigated through conducting a case study of material selection for high pressure turbine blades in jet engines. The main objectives of the case study were: 1) to investigate the new developed aggregation approach in converting real DMs crisp decisions into Pythagorean fuzzy numbers; 2) to test the applicability of both the hybrid PFMCGDM TOPSIS and the hybrid PFMCGDM COPRAS methods in the field of material selection. In this case study, a group of five DMs, faculty members and graduate students, from the Materials Science and Engineering Department at the University of Wisconsin-Milwaukee, were selected to participate as DMs. Their evaluations fulfilled the first objective of the case study. A computer application for material selection was developed to assist designers and engineers in real life problems. A comparative analysis was performed to compare the results of both hybrid MCGDM methods. A sensitivity analysis was conducted to show the robustness and reliability of the outcomes obtained from both methods. It is concluded that using the proposed hybrid PFMCGDM TOPSIS method is more effective and practical in the material selection process than the proposed hybrid PFMCGDM COPRAS method. Additionally, recommendations for further research are suggested

    A decision-making framework based on the Fermatean hesitant fuzzy distance measure and TOPSIS

    Get PDF
    A particularly useful assessment tool for evaluating uncertainty and dealing with fuzziness is the Fermatean fuzzy set (FFS), which expands the membership and non-membership degree requirements. Distance measurement has been extensively employed in several fields as an essential approach that may successfully disclose the differences between fuzzy sets. In this article, we discuss various novel distance measures in Fermatean hesitant fuzzy environments as research on distance measures for FFS is in its early stages. These new distance measures include weighted distance measures and ordered weighted distance measures. This justification serves as the foundation for the construction of the generalized Fermatean hesitation fuzzy hybrid weighted distance (DGFHFHWD) scale, as well as the discussion of its weight determination mechanism, associated attributes and special forms. Subsequently, we present a new decision-making approach based on DGFHFHWD and TOPSIS, where the weights are processed by exponential entropy and normal distribution weighting, for the multi-attribute decision-making (MADM) issue with unknown attribute weights. Finally, a numerical example of choosing a logistics transfer station and a comparative study with other approaches based on current operators and FFS distance measurements are used to demonstrate the viability and logic of the suggested method. The findings illustrate the ability of the suggested MADM technique to completely present the decision data, enhance the accuracy of decision outcomes and prevent information loss

    Algorithms for probabilistic uncertain linguistic multiple attribute group decision making based on the GRA and CRITIC method: application to location planning of electric vehicle charging stations

    Get PDF
    Electric vehicles (EVs) could be regarded as one of the most innovative and high technologies all over the world to cope with the fossil fuel energy resource crisis and environmental pollution issues. As the initiatory task of EV charging station (EVCS) construction, site selection play an important part throughout the whole life cycle, which is deemed to be multiple attribute group decision making (MAGDM) problem involving many experts and many conflicting attributes. In this paper, a grey relational analysis (GRA) method is investigated to tackle the probabilistic uncertain linguistic MAGDM in which the attribute weights are completely unknown information. Firstly, the definition of the expected value is then employed to objectively derive the attribute weights based on the CRiteria Importance Through Intercriteria Correlation (CRITIC) method. Then, the optimal alternative is chosen by calculating largest relative relational degree from the probabilistic uncertain linguistic positive ideal solution (PULPIS) which considers both the largest grey relational coefficient from the PULPIS and the smallest grey relational coefficient from the probabilistic uncertain linguistic negative ideal solution (PULNIS). Finally, a numerical case for site selection of electric vehicle charging stations (EVCS) is designed to illustrate the proposed method. The result shows the approach is simple, effective and easy to calculate

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    Modified EDAS Method Based on Cumulative Prospect Theory for Multiple Attributes Group Decision Making with Interval-valued Intuitionistic Fuzzy Information

    Full text link
    The Interval-valued intuitionistic fuzzy sets (IVIFSs) based on the intuitionistic fuzzy sets combines the classical decision method is in its research and application is attracting attention. After comparative analysis, there are multiple classical methods with IVIFSs information have been applied into many practical issues. In this paper, we extended the classical EDAS method based on cumulative prospect theory (CPT) considering the decision makers (DMs) psychological factor under IVIFSs. Taking the fuzzy and uncertain character of the IVIFSs and the psychological preference into consideration, the original EDAS method based on the CPT under IVIFSs (IVIF-CPT-MABAC) method is built for MAGDM issues. Meanwhile, information entropy method is used to evaluate the attribute weight. Finally, a numerical example for project selection of green technology venture capital has been given and some comparisons is used to illustrate advantages of IVIF-CPT-MABAC method and some comparison analysis and sensitivity analysis are applied to prove this new methods effectiveness and stability.Comment: 48 page

    Large-Scale Green Supplier Selection Approach under a Q-Rung Interval-Valued Orthopair Fuzzy Environment

    Get PDF
    As enterprises pay more and more attention to environmental issues, the green supply chain management (GSCM) mode has been extensively utilized to guarantee proïŹt and sustainable development. Greensupplierselection(GSS),whichisakeysegmentofGSCM,hasbeeninvestigated to put forward plenty of GSS approaches

    Fuzzy Techniques for Decision Making 2018

    Get PDF
    Zadeh's fuzzy set theory incorporates the impreciseness of data and evaluations, by imputting the degrees by which each object belongs to a set. Its success fostered theories that codify the subjectivity, uncertainty, imprecision, or roughness of the evaluations. Their rationale is to produce new flexible methodologies in order to model a variety of concrete decision problems more realistically. This Special Issue garners contributions addressing novel tools, techniques and methodologies for decision making (inclusive of both individual and group, single- or multi-criteria decision making) in the context of these theories. It contains 38 research articles that contribute to a variety of setups that combine fuzziness, hesitancy, roughness, covering sets, and linguistic approaches. Their ranges vary from fundamental or technical to applied approaches

    Introducing alternatives ranking with elected nominee (ARWEN) method: a case study of supplier selection

    Get PDF
    Supply chain management (SCM) has gradually evolved beyond the straightforward logic of benefits and economic viewpoints. Supplier selection and performance evaluation are the crucial strategic components of any SCM system with a substantial economic impact and risk reduction. Several conflicting factors make supplier selection a challenging multi-criteria decision-making problem. This paper introduces a method called alternative ranking with the elected nominee (ARWEN) to select suppliers in Iran’s dairy product chain store. The primary principle of ARWEN is to choose the best alternative based on the lowest change rate rather than the elected nominee. Four extensions of the ARWEN method are proposed depending upon the nature and level of information available to the decision-makers. A fifth extended version termed E-ARWEN is also recommended to consider the negative form of the elected nominee. Two novel statistical tools, the ranking performance index and the Zakeri-Konstantas distance product correlation coefficient, are also put forth to validate the ARWEN extensions’ outcomes. The results and verification of this new method are carried out through two supplier selection case examples. Comprehensive comparisons were carried out to explore the new methods’ behaviors, indicating ARWEN III and E-ARWEN have similar behavior to VIKOR, SAW, and EDAS in generating rankings
    • 

    corecore