5 research outputs found

    TOA Estimation of Chirp Signal in Dense Multipath Environment for Low-Cost Acoustic Ranging

    Get PDF
    In this paper, a novel time of arrival (TOA) estimation method is proposed based on an iterative cleaning process to extract the first path signal. The purpose is to address the challenge in dense multipath indoor environments that the power of the first path component is normally smaller than other multipath components, where the traditional match filtering (MF)-based TOA estimator causes huge errors. Along with parameter estimation, the proposed process is trying to detect and extract the first path component by eliminating the strongest multipath component using a band-elimination filter in fractional Fourier domain at each iterative procedure. To further improve the stability, a slack threshold and a strict threshold are introduced. Six simple and easily calculated termination criteria are proposed to monitor the iterative process. When the iterative 'cleaning' process is done, the outputs include the enhanced first path component and its estimated parameters. Based on these outputs, an optimal reference signal for the MF estimator can be constructed, and a more accurate TOA estimation can be conveniently obtained. The results from numerical simulations and experimental investigations verified that, for acoustic chirp signal TOA estimation, the accuracy of the proposed method is superior to those obtained by the conventional MF estimators

    Analysis and decomposition of frequency modulated multicomponent signals

    Get PDF
    Frequency modulated (FM) signals are studied in many research fields, including seismology, astrophysics, biology, acoustics, animal echolocation, radar and sonar. They are referred as multicomponent signals (MCS), as they are generally composed of multiple waveforms, with specific time-dependent frequencies, known as instantaneous frequencies (IFs). Many applications require the extraction of signal characteristics (i.e. amplitudes and IFs). that is why MCS decomposition is an important topic in signal processing. It consists of the recovery of each individual mode and it is often performed by IFs separation. The task becomes very challenging if the signal modes overlap in the TF domain, i.e. they interfere with each other, at the so-called non-separability region. For this reason, a general solution to MCS decomposition is not available yet. As a matter of fact, the existing methods addressing overlapping modes share the same limitations: they are parametric, therefore they adapt only to the assumed signal class, or they rely on signal-dependent and parametric TF representations; otherwise, they are interpolation techniques, i.e. they almost ignore the information corrupted by interference and they recover IF curve by some fitting procedures, resulting in high computational cost and bad performances against noise. This thesis aims at overcoming these drawbacks, providing efficient tools for dealing with MCS with interfering modes. An extended state-of-the-art revision is provided, as well as the mathematical tools and the main definitions needed to introduce the topic. Then, the problem is addressed following two main strategies: the former is an iterative approach that aims at enhancing MCS' resolution in the TF domain; the latter is a transform-based approach, that combines TF analysis and Radon Transform for separating individual modes. As main advantage, the methods derived from both the iterative and the transform-based approaches are non-parametric, as they do not require specific assumptions on the signal class. As confirmed by the experimental results and the comparative studies, the proposed approach contributes to the current state of the-art improvement

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    New approaches for EEG signal processing: artifact EOG removal by ICA-RLS scheme and tracks extraction method

    Get PDF
    Localizing the bioelectric phenomena originating from the cerebral cortex and evoked by auditory and somatosensory stimuli are clear objectives to both understand how the brain works and to recognize different pathologies. Diseases such as Parkinson’s, Alzheimer’s, schizophrenia and epilepsy are intensively studied to find a cure or accurate diagnosis. Epilepsy is considered the disease with major prevalence within disorders with neurological origin. The recurrent and sudden incidence of seizures can lead to dangerous and possibly life-threatening situations. Since disturbance of consciousness and sudden loss of motor control often occur without any warning, the ability to predict epileptic seizures would reduce patients’ anxiety, thus considerably improving quality of life and safety. The common procedure for epilepsy seizure detection is based on brain activity monitorization via electroencephalogram (EEG) data. This process consumes a lot of time, especially in the case of long recordings, but the major problem is the subjective nature of the analysis among specialists when analyzing the same record. From this perspective, the identification of hidden dynamical patterns is necessary because they could provide insight into the underlying physiological mechanisms that occur in the brain. Time-frequency distributions (TFDs) and adaptive methods have demonstrated to be good alternatives in designing systems for detecting neurodegenerative diseases. TFDs are appropriate transformations because they offer the possibility of analyzing relatively long continuous segments of EEG data even when the dynamics of the signal are rapidly changing. On the other hand, most of the detection methods proposed in the literature assume a clean EEG signal free of artifacts or noise, leaving the preprocessing problem opened to any denoising algorithm. In this thesis we have developed two proposals for EEG signal processing: the first approach consists in electrooculogram (EOG) removal method based on a combination of ICA and RLS algorithms which automatically cancels the artifacts produced by eyes movement without the use of external “ad hoc” electrode. This method, called ICA-RLS has been compared with other techniques that are in the state of the art and has shown to be a good alternative for artifacts rejection. The second approach is a novel method in EEG features extraction called tracks extraction (LFE features). This method is based on the TFDs and partial tracking. Our results in pattern extractions related to epileptic seizures have shown that tracks extraction is appropriate in EEG detection and classification tasks, being practical, easily applicable in medical environment and has acceptable computational cost

    Advances in Computer Recognition, Image Processing and Communications, Selected Papers from CORES 2021 and IP&C 2021

    Get PDF
    As almost all human activities have been moved online due to the pandemic, novel robust and efficient approaches and further research have been in higher demand in the field of computer science and telecommunication. Therefore, this (reprint) book contains 13 high-quality papers presenting advancements in theoretical and practical aspects of computer recognition, pattern recognition, image processing and machine learning (shallow and deep), including, in particular, novel implementations of these techniques in the areas of modern telecommunications and cybersecurity
    corecore