90 research outputs found

    WiFi emission-based vs passive radar localization of human targets

    Get PDF
    In this paper two approaches are considered for human targets localization based on the WiFi signals: the device emission-based localization and the passive radar. Localization performance and characteristics of the two localization techniques are analyzed and compared, aiming at their joint exploitation inside sensor fusion systems. The former combines the Angle of Arrival (AoA) and the Time Difference of Arrival (TDoA) measures of the device transmissions to achieve the target position, while the latter exploits the AoA and the bistatic range measures of the target echoes. The results obtained on experimental data show that the WiFi emission-based strategy is always effective for the positioning of human targets holding a WiFi device, but it has a poor localization accuracy and the number of measured positions largely depends on the device activity. In contrast, the passive radar is only effective for moving targets and has limited spatial resolution but it provides better accuracy performance, thanks to the possibility to integrate a higher number of received signals. These results also demonstrate a significant complementarity of these techniques, through a suitable experimental test, which opens the way to the development of appropriate sensor fusion techniques

    D21.3 Analysis of initial results at EuWIN@CTTC

    Get PDF
    Deliverable D21.3 del projecte europeu NEWCOM#The nature of this Deliverable of WP2.1 (“Radio interfaces for next-generation wireless systems”) is mainly descriptive and its purpose is to provide a report on the status of the different Joint Research Activities (JRAs) currently ongoing, some of them being performed on the facilities that are available at EuWInPeer ReviewedPreprin

    Advanced Signal Processing Algorithms for GNSS/OFDM Receiver

    Get PDF
    The recent years have shows a growing interest in urban and indoor positioning with the development of applications such as car navigation, pedestrian navigation, local search and advertising and others location-based-services (LBS). However, in urban and indoor environment the classical mean of positioning, the Global Positioning Satellite System (GNSS) has limited availability, accuracy, continuity and integrity due to signal blockage by building, intense multipath conditions and interferences from the other signals, abundant in metropolitan areas. Even some improvements of GNSS can reduce these issues (high-sensitivity receiver, assisted-GNSS, multi-constellation GNSS…), they do not permit to reach sufficient performance in deep urban and indoor environments. However, some alternatives to GNSS allow complementing it in difficult environments. They are, for example, additional sensors (accelerometers, gyrometers, magnetometers, odometers, laser, and video), radiofrequency systems dedicated to positioning (pseudolites, RFID, UWB) or signals of opportunity (SoO). SoO are telecommunication signals (as mobile phone, TV, radio, Wi-Fi) that are used opportunely to provide a positioning service. Even if these signals are not designed for such application, they have the advantages to be many and varied in urban and indoor environments. In addition they allow, by definition, a good integration of communication and positioning services. Among all the SoO available, this thesis focuses on the one based on the Orthogonal Frequency Division Multiplexing (OFDM) modulation. This choice is motivated by the important popularity of this modulation, that has been chosen in several actual and future telecommunication and broadcasting standards (Wi-Fi, WiMAX, LTE, DVB-T/H/SH, DAB, T-DMB, ISDB-T, MediaFLO…). Among this standard using the OFDM modulation, the European standard for digital television called “Digital Video Broadcasting – Terrestrial” (DVB-T) has been selected to be studied in this thesis. The choice is motivated by the relatively simple definition of this standard, allowing reuse of the work for other OFDM standards, and also because it is already operational in Europe, allowing tests on real signals. A method to obtain ranging measurements based on timing synchronization using DVB-T signals has been developed. This method uses delay lock loops (DLL) and takes into account the specificity of the terrestrial propagation channel (many multipathes, direct signal sometimes absent, quick variation of received power…). The performance of the method has been determinate theoretically and validated by simulation, in an ideal case (i.e.; with a Gaussian propagation channel). This theoretical study has proven than the ranging error standard deviation has an order of magnitude of 1 meter, for signal to noise ratio of about -20 dB, a SNR 40 dB under the demodulation threshold of the TV signal. The performance in a realistic propagation channel has been determined on real signal. For that purpose a test bench has been developed. It allows to receive and record TV signals on two synchronized antennas and it includes and GPS receiver to record a reference position and provide a GPS time reference to the test bench. Tests on real signals have been realized in several environments (sub-urban, urban and indoor) using 1 emitter synchronized on GPS time and 2 emitters in a signal frequency network (SFN). The results of these tests on real signals showed a precision of the ranging estimation of about 10 meters with a better performance in rural environment and an improvement of the ranging estimate using antenna diversity. Finally, the thesis proves the feasibility of positioning with signal using the OFDM modulation, with a technique that can be easily tailored to other OFDM signal than DVB-T

    The DVB-T-Based Positioning System and Single Frequency Network Offset Estimation

    Get PDF
    As position information becomes more and more important in many fields of technology it is advantageous to recognize it in scenarios where satellite-based systems fail. Such a case is the scenario inside buildings where attenuation of a signal is too high making it impossible to receive despite the availability of terrestrial services. A positioning system based on terrestrial broadcasting is presented in this paper. The aim is to create an automatic receiver enabling a multi--sensor positioning system to be built and resulting in increased availability and reliability of position information. This paper introduces a method that demonstrates how to design a signal detector capable of operating in a multipath scenario. Finally, the most restrictive problem of the positioning system is the unknown time offset setting of individual emitters that render this system useless. A solution to this problem is proposed and tested in a real scenario. The innovative methods and algorithms presented in this paper show, for the first time, how to automatically evaluate position using digital video broadcasting. The result of an experiment with a real digital video broadcasting network is presented

    Cooperative Localization on Computationally Constrained Devices

    Get PDF
    Cooperative localization is a useful way for nodes within a network to share location information in order to better arrive at a position estimate. This is handy in GPS contested environments (indoors and urban settings). Most systems exploring cooperative localization rely on special hardware, or extra devices to store the database or do the computations. Research also deals with specific localization techniques such as using Wi-Fi, ultra-wideband signals, or accelerometers independently opposed to fusing multiple sources together. This research brings cooperative localization to the smartphone platform, to take advantage of the multiple sensors that are available. The system is run on Android powered devices, including the wireless hotspot. In order to determine the merit of each sensor, analysis was completed to determine successes and failures. The accelerometer, compass, and received signal strength capability were examined to determine their usefulness in cooperative localization. Experiments at meter intervals show the system detected changes in location at each interval with an average standard deviation of 0.44m. The closest location estimates occurred at 3m, 4m and 6m with average errors of 0.15m, 0.11m, and 0.07m respectively. This indicates that very precise estimates can be achieved with an Android hotspot and mobile nodes

    Indoor location based services challenges, requirements and usability of current solutions

    Get PDF
    Indoor Location Based Services (LBS), such as indoor navigation and tracking, still have to deal with both technical and non-technical challenges. For this reason, they have not yet found a prominent position in people’s everyday lives. Reliability and availability of indoor positioning technologies, the availability of up-to-date indoor maps, and privacy concerns associated with location data are some of the biggest challenges to their development. If these challenges were solved, or at least minimized, there would be more penetration into the user market. This paper studies the requirements of LBS applications, through a survey conducted by the authors, identifies the current challenges of indoor LBS, and reviews the available solutions that address the most important challenge, that of providing seamless indoor/outdoor positioning. The paper also looks at the potential of emerging solutions and the technologies that may help to handle this challenge

    Study of the cyclostationarity properties of various signals of opportunity

    Get PDF
    Global Navigation Satellite Systems (GNSS) offer precise position estimation and navigation services outdoor but they are rarely accessible in strong multipath environments, such as indoor environments. Fortunately, several Signals of Opportunity (SoO), (such as RFID, Wi-Fi, Bluetooth, digital TV signals, etc.) are readily available in these environments, creating an opportunity for seamless positioning. Performance evolution of positioning can be achieved through contextual exploitation of SoO. The detection and identification of available SoO signals or of the signals which are most relevant to localization and the signal selection in an optimum way, according to designer defined optimality criteria, are important stages to enter such contextual awareness domain. Man-made modulated signals have certain properties which vary periodically in time and this time-varying periodical characteristics trigger what is known as cyclostationarity. Cyclostationarity analysis can be used, among others, as a tool for signal detection. Detected signals through cyclostationary features can be exploited as SoO. The main purpose of this thesis is to study and analyze the cyclostationarity properties of various SoO. An additional goal is to investigate whether such cyclostationarity properties can be used to detect, identify and distinguish the signals which are present in a certain frequency band. The thesis is divided into two parts. In the literature review part, the physical layer study of several signals is given, by emphasizing the potential of SoO in positioning. In the implementation part, the possibility of signals detection through cyclostationary features is investigated through MATLAB simulations. Cyclostationary properties obtained through FFT accumulation Method (FAM) and statistical performance of detection are studied in the presence of stationary additive white Gaussian noise (AWGN). Besides that, the performance in signal detection using cyclostationary-based detector is also compared to the performance with the energy-based detectors, used as benchmarks. The simulated result suggest that cyclostationary features can certainly detect the presence of signals in noise, but simple cases, such as one type of signal only and AWGN noise, are better addressed via traditional energy-based detection. However, cyclostationary features can exhibit advantages in other types of noises and in the presence of signal mixtures which in fact may fulfil one of the preliminary requirements of cognitive positioning

    Position estimation using the Digital Audio Broadcast (DAB) signal

    Get PDF
    Over the past decades, there have been a number of trends that have driven the desire to improve the ability to navigate in all environments. While the Global Positioning System has been the driving factor behind most of these trends, there are limitations to this system that have become more evident over time as the world has increasingly come to rely on navigation. These limitations are mostly due to the low transmission power of the satellites, where navigation signals broadcast from space are comparatively weak, especially by the time they have travelled to receivers on the ground. This makes the signals particularly vulnerable to fading in difficult environments such as "urban jungles" and other built up areas. The low signal-to-noise ratio (SNR) also means, that the signals are susceptible to jamming, both hostile and accidental. This motivates the need for alternatives technologies to satellite navigation and consider terrestrial based alternatives such as LORAN-C and eLORAN, but there is also significant interest in the exploitation of other non-navigation signals for positioning and navigation purposes. These so-called 'Signals of Opportunity' do not generally require any alterations to existing communications transmission infrastructure and utilise alternative multi-carrier modulation techniques to those used by navigation systems. This project examines the use of such a signal, the Digital Audio Broadcast (DAB) signal, as a positioning source. This thesis contains complete research from initial coverage simulations in the UK, through to extensive static testing, and the use of the signal in a dynamic environment and it has been shown that the Digital Audio Broadcast signal has potential as a terrestrial based positioning signal

    Robustness, Security and Privacy in Location-Based Services for Future IoT : A Survey

    Get PDF
    Internet of Things (IoT) connects sensing devices to the Internet for the purpose of exchanging information. Location information is one of the most crucial pieces of information required to achieve intelligent and context-aware IoT systems. Recently, positioning and localization functions have been realized in a large amount of IoT systems. However, security and privacy threats related to positioning in IoT have not been sufficiently addressed so far. In this paper, we survey solutions for improving the robustness, security, and privacy of location-based services in IoT systems. First, we provide an in-depth evaluation of the threats and solutions related to both global navigation satellite system (GNSS) and non-GNSS-based solutions. Second, we describe certain cryptographic solutions for security and privacy of positioning and location-based services in IoT. Finally, we discuss the state-of-the-art of policy regulations regarding security of positioning solutions and legal instruments to location data privacy in detail. This survey paper addresses a broad range of security and privacy aspects in IoT-based positioning and localization from both technical and legal points of view and aims to give insight and recommendations for future IoT systems providing more robust, secure, and privacy-preserving location-based services.Peer reviewe
    • …
    corecore