264,399 research outputs found

    Energy-storage properties and electrocaloric effects of Pb(1-3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films

    Get PDF
    1-µm-Pb(1-3x/2)LaxZr0.85Ti0.15O3 (PLZT) antiferroelectric (AFE) thick films with x = 0.08, 0.10, 0.12, and 0.14 were deposited on LaNiO3/Si (100) substrates by a sol-gel method. The dielectric properties, energy-storage performance, electrocaloric effect, and leakage current behavior were investigated in detail. With increasing La content, dielectric constant and saturated polarizations of the thick films were gradually decreased. A maximum recoverable energy-storage density of 38 J/cm3 and efficiency of 71% were achieved in the thick films with x = 0.12 at room temperature. Moreover, a large reversible adiabatic temperature change ∆T = 25.0 o C was presented in the thick films with x = 0.08 at 127 o C at 990 kV/cm. All the samples had a lower leakage current density below 10- 6 A/cm2 at room temperature. These results indicated that the PLZT AFE thick films could be a potential candidate for applications in high energy-storage density capacitors and cooling devices

    Superconductivity devices: Commercial use of space

    Get PDF
    High T sub C superconducting thick film were prepared by a screen printing process. Y-based (YBa2Cu3O(7-x) superconducting thick film were printed on 211/Al2O3, SNT/Al2O3, and YSZ substrates. Because of poor adhesion of the superconductor thick films to 211/Al2O3 and SNT/Al2O3 substrates, relatively low T sub C and J sub C values were obtained from the films printed on these substrates. Critical temperatures (T sub C) of YBa2Cu3O(7-x) thick films deposited on 211/Al2O3 and SNT/Al2O3 substrates were about 80 K. The critical current densities (J sub C) of these films were less than 2 A/sq cm. Higher T sub C and J sub C YBa2Cu3O(7-x) thick films were printed on YSZ substrates. A YBa2Cu3O(7-x) thick film with T sub C=86.4 and J sub C= 50.4 A/sq cm was prepared by printing the film on YSZ substrate and firing at 990 C for 10 minutes. Multiple-lead samples were also prepared on the YSZ substrates. The multiple-lead samples showed lower T sub C and/or J sub C values than those of the plain samples. The electrical properties of YBa2Cu3O(7-x) thick films were determined by the microstructures of the films. The YBa2Cu3O(7-x) thick films printed on the YSZ substrates, which had the best properties among the films printed on the three different kinds of substrates, had the highest density and the best particle interconnection. The YBa2Cu3O(7-x) thick films with preferred orientation in (001) direction were obtained on the YSZ substrates. Cracks, which retard the properties of the films, were found from the films deposited on the YSZ substrates. Currently, a MSZ (Magnesium Stabilized Zirconia) substrate, which had higher thermal expansion coefficient than the YSZ substrate, is used as substrate for the YBa2Cu3O(7-x) thick film in order to eliminate the cracks on the film. Bi-based superconductor thick films were printed on polycrystalline MgO and YSZ substrates. Interactions between BSCCO thick films and the YSZ substrates were observed. Various buffer layer materials were applied onto the substrates in order to avoid the interactions between the BSCCO thick films and the ZrO2-based substrates. So far, a BSCCO printed on MgO substrate with T Sub C=89K was obtained. The J sub C of the film was lower than 0.1 A/sq cm by reason of poor interconnectivity of the BSCCO particles

    Drastic improvement of surface structure and current-carrying ability in YBa2Cu3O7 films by introducing multilayered structure

    Full text link
    Much smoother surfaces and significantly improved superconducting properties of relatively thick YBa2Cu3O7 (YBCO) films have been achieved by introducing a multilayered structure with alternating main YBCO and additional NdBCO layers. The surface of thick (1 microm) multilayers has almost no holes compared to YBCO films. Critical current density (Jc) have been drastically increased up to a factor > 3 in 1 microm multilayered structures compared to YBCO films over entire temperature and applied magnetic filed range. Moreover, Jc values measured in thick multilayers are even larger than in much thinner YBCO films. The Jc and surface improvement have been analysed and attributed to growth conditions and corresponding structural peculiarities.Comment: Accepted to Appl. Phys. Lett. 88, June (2006), in press 4 pages, 3 figure

    Direct evidence for ferroelectric polar distortion in ultrathin lead titanate perovskite films

    Full text link
    X-ray photoelectron diffraction is used to directly probe the intra-cell polar atomic distortion and tetragonality associated with ferroelectricity in ultrathin epitaxial PbTiO3 films. Our measurements, combined with ab-initio calculations, unambiguously demonstrate non-centro-symmetry in films a few unit cells thick, imply that films as thin as 3 unit cells still preserve a ferroelectric polar distortion, and also show that there is no thick paraelectric dead layer at the surface

    Inverse Spin Hall Effect in nanometer-thick YIG/Pt system

    Full text link
    High quality nanometer-thick (20 nm, 7 nm and 4 nm) epitaxial YIG films have been grown on GGG substrates using pulsed laser deposition. The Gilbert damping coefficient for the 20 nm thick films is 2.3 x 10-4 which is the lowest value reported for sub-micrometric thick films. We demonstrate Inverse spin Hall effect (ISHE) detection of propagating spin waves using Pt. The amplitude and the lineshape of the ISHE voltage correlate well to the increase of the Gilbert damping when decreasing thickness of YIG. Spin Hall effect based loss-compensation experiments have been conducted but no change in the magnetization dynamics could be detected

    Screen Printed PZT Thick Films Using Composite Film Technology

    Get PDF
    A spin coating composite sol gel technique for producing lead zirconate titanate (PZT) thick films has been modified for use with screen printing techniques. The resulting screen printing technique can be used to produce 10 ?m thick films in a single print. The resultant films are porous but the density can be increased through the use of repeated sol infiltration/pyrolysis treatments to yield a high density film. When fired at 710°C the composite screen printed films have dielectric and piezoelectric properties comparable to, or exceeding, those of films produced using a 'conventional' powder/glass frit/oil ink and fired at 890°C
    • …
    corecore