1,555 research outputs found

    Ensambles de arqueas y bacterias en la Zona de Mínimo Oxígeno del ecosistema de surgencia de Chile central determinados mediante biomarcadores orgánicos

    Get PDF
    Indexación: Web of Science; Scielo.Organic biomarkers were used to investigate the influence of seasonal changes in oxygenation and water chemistry on the distribution of archaea and bacteria in the water column and surface sediments of the continental shelf off central Chile (ca. 36°S), an area influenced by seasonal upwelling and the development of an oxygen minimum zone. We were interested in establishing if occurrence of archaea and bacteria responds to oxygenation and water chemistry for which we analyzed archaeal isoprenoid (i) and bacterial branched (br) glycerol dialkyl glycerol tetraethers (GDGTs). Our results combined with molecular data from a year round observational program at the same sampling site and depths indicatives the occurrence and dominance of the marine pelagic group Thaumarchaeota. Changes in the distribution of iGDGTs might be explained by (i) the presence of archaeal populations in sub-oxic waters, phylogenetically different from those in surface water, (ii) changes in the relative contribution of Euryarchaeota with depth, and (iii) a relationship between Thaumarchaeota and environmental factors other than temperature. Branched GDGTs were more abundant in the upper, oxic layer during the non-upwelling season, may be a result of higher river runoff, whereas their diversity was higher within sub-oxic waters. Our results indicate a vertical segregation of iGDGTs and brGDGTs, with predominance of archaeal biomarkers during the low productivity season.Se utilizaron biomarcadores orgánicos en para investigar la influencia de cambios estacionales en los niveles de oxigenación y la química del agua sobre la distribución de arqueas y bacterias en la columna de agua y los sedimentos superficiales de la plataforma continental frente a Chile central, un área influenciada por surgencia estacional asociada al desarrollo de una zona de mínimo oxígeno. Nuestro interés es establecer si la ocurrencia de arquea y bacteria responde a la oxigenación y química del agua para lo cual analizamos gliceroles dialquil gliceroles tetra-éteres (GDGTs) isoprenoides arqueanos (i) y ramificados bacterianos (r). Nuestros resultados, combinados con datos moleculares de observaciones durante un año en el mismo lugar y profundidades del sitio de estudio indican la presencia y dominancia del grupo arqueano marino- pelágico Thaumarchaeota. Los cambios observados en la distribución de iGDGTs podrían explicarse por (i) la presencia de poblaciones de arqueas marinas en la capa de agua sub-óxica, filogenéticamente diferentes a las de aguas superficiales, (ii) cambio en la contribución relativa de Euryarchaeota con profundidad, y (iii) una relación entre Thaumarchaeota y factores ambientales distintos a la temperatura. Los GDGTs ramificados fueron más abundantes en la capa óxica superior durante el periodo de no-surgencia, tal vez influenciado por la alta descarga de ríos, mientras que su diversidad fue más alta en el agua sub-óxica. Nuestros resultados indican una segregación vertical de los GDGTs isoprenoides y ramificados, con el predominio de biomarcadores arqueanos durante el periodo de baja productividad.http://ref.scielo.org/vq5y7

    Climate model and proxy data constraints on ocean warming across the Paleocene-Eocene Thermal Maximum

    Get PDF
    Constraining the greenhouse gas forcing, climatic warming and estimates of climate sensitivity across ancient large transient warming events is a major challenge to the palaeoclimate research community. Here we provide a new compilation and synthesis of the available marine proxy temperature data across the largest of these hyperthermals, the Paleocene-Eocene Thermal Maximum (PETM). This includes the application of consistent temperature calibrations to all data, including the most recent set of calibrations for archaeal lipid-derived palaeothermometry. This compilation provides the basis for an informed discussion of the likely range of PETM warming, the biases present in the existing record and an initial assessment of the geographical pattern of PETM ocean warming. To aid interpretation of the geographic variability of the proxy-derived estimates of PETM warming, we present a comparison of this data with the patterns of warming produced by high pCO2 simulations of Eocene climates using the Hadley Centre atmosphere-ocean general circulation model (AOGCM) HadCM3L. On the basis of this comparison and taking into account the patterns of intermediate-water warming we estimate that the global mean surface temperature anomaly for the PETM is within the range of 4 to 5°C

    Global climate evolution during the last deglaciation

    Get PDF
    Deciphering the evolution of global climate from the end of the Last Glacial Maximum approximately 19 ka to the early Holocene 11 ka presents an outstanding opportunity for understanding the transient response of Earth’s climate system to external and internal forcings. During this interval of global warming, the decay of ice sheets caused global mean sea level to rise by approximately 80 m; terrestrial and marine ecosystems experienced large disturbances and range shifts; perturbations to the carbon cycle resulted in a net release of the greenhouse gases CO_2 and CH_4 to the atmosphere; and changes in atmosphere and ocean circulation affected the global distribution and fluxes of water and heat. Here we summarize a major effort by the paleoclimate research community to characterize these changes through the development of well-dated, high-resolution records of the deep and intermediate ocean as well as surface climate. Our synthesis indicates that the superposition of two modes explains much of the variability in regional and global climate during the last deglaciation, with a strong association between the first mode and variations in greenhouse gases, and between the second mode and variations in the Atlantic meridional overturning circulation

    Latitudinal differences in the amplitude of the OAE-2 carbon isotopic excursion : pCO2 and paleo productivity

    Get PDF
    A complete, well-preserved record of the Cenomanian/Turonian (C/T) Oceanic Anoxic Event 2 (OAE-2) was recovered from Demerara Rise in the southern North Atlantic Ocean (ODP site 1260). Across this interval, we determined changes in the stable carbon isotopic composition of sulfur-bound phytane (δ13Cphytane), a biomarker for photosynthetic algae. The δ13Cphytane record shows a positive excursion at the onset of the OAE-2 interval, with an unusually large amplitude (~7‰) compared to existing C/T proto-North Atlantic δ13Cphytane records (3–6‰). Overall, the amplitude of the excursion of δ13Cphytane decreases with latitude. Using reconstructed sea surface temperature (SST) gradients for the proto-North Atlantic, we investigated environmental factors influencing the latitudinal δ13Cphytane gradient. The observed gradient is best explained by high productivity at DSDP Site 367 and Tarfaya basin before OAE-2, which changed in overall high productivity throughout the proto-North Atlantic during OAE-2. During OAE-2, productivity at site 1260 and 603B was thus more comparable to the mid-latitude sites. Using these constraints as well as the SST and δ13Cphytane-records from Site 1260, we subsequently reconstructed pCO2 levels across the OAE-2 interval. Accordingly, pCO2 decreased from ca. 1750 to 900 ppm during OAE-2, consistent with enhanced organic matter burial resulting in lowering pCO2. Whereas the onset of OAE-2 coincided with increased pCO2, in line with a volcanic trigger for this event, the observed cooling within OAE-2 probably resulted from CO2 sequestration in black shales outcompeting CO2 input into the atmosphere. Together these results show that the ice-free Cretaceous world was sensitive to changes in pCO2 related to perturbations of the global carbon cycle

    A study of the TEX86 paleothermometer in the water column and sediments of the Santa Barbara Basin, California

    Get PDF
    Particulate organic matter collected during a 2-year period, as part of an ongoing sediment trap study, and a high-resolution sediment record from 1850 to 1987 A.D. from the Santa Barbara Basin were analyzed for TEX86, a temperature proxy based on marine crenarchaeotal membrane lipids. Highest fluxes of crenarchaeotal lipids in the water column were found in May-June 1996 and from October 1996 to January 1997 and, in general, showed a good correlation with mass fluxes. TEX86 reconstructed temperatures from the sediment trap series ranged from 8 to 11°C and were usually substantially lower than sea surface temperatures (SST), indicating that unlike in previous studies, the TEX86 corresponds to subsurface temperatures, likely between 100 and 150 m. TEX86 temperature variations observed in trap samples were not coupled to changes in SST or deep-water temperatures and only to some degree with crenarchaeotal lipid fluxes. This suggests that a complex combination of different depth origins and seasonal growth periods of Crenarchaeota contributed to the variations in TEX86 signal during the annual cycle. TEX86 temperatures in the two sediment cores studied (8-13°C) were also substantially lower than those of instrumental SST records (14-17.5°C) confirming that TEX86 records a subsurface temperature signal in the Santa Barbara Basin. This result highlights the importance of performing calibration studies using sediment traps and core tops before applying the TEX86 temperature proxy in a given study area

    An interlaboratory study of TEX86 and BIT analysis of sediments, extracts and standard mixtures.

    Get PDF
    Two commonly used proxies based on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) are the TEX86 (TetraEther indeX of 86 carbon atoms) paleothermometer for sea surface temperature reconstructions and the BIT (Branched Isoprenoid Tetraether) index for reconstructing soil organic matter input to the ocean. An initial round-robin study of two sediment extracts, in which 15 laboratories participated, showed relatively consistent TEX86 values (reproducibility ±3-4°C when translated to temperature) but a large spread in BIT measurements (reproducibility ±0.41 on a scale of 0-1). Here we report results of a second round-robin study with 35 laboratories in which three sediments, one sediment extract, and two mixtures of pure, isolated GDGTs were analyzed. The results for TEX86 and BIT index showed improvement compared to the previous round-robin study. The reproducibility, indicating interlaboratory variation, of TEX86 values ranged from 1.3 to 3.0°C when translated to temperature. These results are similar to those of other temperature proxies used in paleoceanography. Comparison of the results obtained from one of the three sediments showed that TEX86 and BIT indices are not significantly affected by interlaboratory differences in sediment extraction techniques. BIT values of the sediments and extracts were at the extremes of the index with values close to 0 or 1, and showed good reproducibility (ranging from 0.013 to 0.042). However, the measured BIT values for the two GDGT mixtures, with known molar ratios of crenarchaeol and branched GDGTs, had intermediate BIT values and showed poor reproducibility and a large overestimation of the "true" (i.e., molar-based) BIT index. The latter is likely due to, among other factors, the higher mass spectrometric response of branched GDGTs compared to crenarchaeol, which also varies among mass spectrometers. Correction for this different mass spectrometric response showed a considerable improvement in the reproducibility of BIT index measurements among laboratories, as well as a substantially improved estimation of molar-based BIT values. This suggests that standard mixtures should be used in order to obtain consistent, and molar-based, BIT values

    Latitudinal differences in the amplitude of the OAE-2 carbon isotopic excursion: pCO2 and paleoproductivity [Discussion paper]

    Get PDF
    A complete, well-preserved record of the Cenomanian/Turonian (C/T) Oceanic Anoxic Event 2 (OAE-2) was recovered from Demerara Rise in the southern North Atlantic Ocean (ODP site 1260). Across this interval, we determined changes in the stable carbon isotopic composition of sulfur-bound phytane (δ13Cphytane, a biomarker for photosynthetic algae. The δ13Cphytane record shows a positive excursion at the onset of the OAE-2 interval, with an unusually large amplitude (~7 ‰) compared to existing C/T proto-North Atlantic δ13Cphytane records (3–6 ‰). Overall, the amplitude of the excursion of δ13Cphytane decreases with latitude. Using reconstructed sea surface temperature (SST) gradients for the proto-North Atlantic, we investigated environmental factors influencing the latitudinal δ13Cphytane gradient. The observed gradient is best explained by high productivity at DSDP Site 367 and Tarfaya basin before OAE-2, which changed in overall high productivity throughout the proto-North Atlantic during OAE-2. During OAE-2, productivity at site 1260 and 603B was thus more comparable to the mid-latitude sites. Using these constraints as well as the SST and δ13Cphytane-records from Site 1260, we subsequently reconstructed pCO2 levels across the OAE-2 interval. Accordingly, pCO2 decreased from ca. 1750 to 900 ppm during OAE-2, consistent with enhanced organic matter burial resulting in lowering pCO2. Whereas the onset of OAE-2 coincided with increased pCO2, in line with a volcanic trigger for this event, the observed cooling within OAE-2 probably resulted from CO2 sequestration in black shales outcompeting CO2 input into the atmosphere. Together these results show that the ice-free Cretaceous world was sensitive to changes in pCO2 related to perturbations of the global carbon cycle

    Coherent millennial-scale patterns in Uk'37 and TEX86H temperature records during the penultimate interglacial-to-glacial cycle in the western Mediterranean

    Get PDF
    The TEX86H temperature proxy is a relatively new proxy based on crenarchaeotal lipids and has rarely been applied together with other temperature proxies. In this study, we applied the TEX86H on a sediment core from the Alboran Sea (western Mediterranean, core ODP-977A) covering the penultimate climate cycle, that is, from 244 to 130 ka, and compared this with previously published sea surface temperatures derived from the U37k' of alkenones of haptophyta and Mg/Ca records of planktonic foraminifera. The TEX86H temperature record shows remarkably similar stadial-interstadial patterns and abrupt temperature changes to those observed with the U37k' palaeothermometer. Absolute TEX86H temperature estimates are generally higher than those of U37k', though this difference (<3°C in 81% of the data points) is mainly within the temperature calibration error for both proxies, suggesting that crenarchaeota and haptophyta experienced similar temperature variations. During occasional events (<5% of the analyzed time span), however, the TEX86H exhibits considerably higher absolute temperature estimates than the U37k'. Comparison with Mg/Ca records of planktonic foraminifera as well as other Mediterranean TEX86 and U37k' records suggests that part of this divergence may be attributed to seasonal differences, that is, with TEX86H reflecting mainly the warm summer season while U37k' would show annual mean. Biases in the global calibration of both proxies or specific biases in the Mediterranean are an alternative, though less likely, explanation. Despite differences between absolute TEX86H and U37k' temperatures, the correlation between the two proxies (r2 = 0.59, 95% significance) provides support for the occurrence of abrupt temperature variations in the western Mediterranean during the penultimate interglacial-to-glacial cycle
    corecore