2,424 research outputs found

    Monitoring spatial sustainable development: Semi-automated analysis of satellite and aerial images for energy transition and sustainability indicators

    Full text link
    Solar panels are installed by a large and growing number of households due to the convenience of having cheap and renewable energy to power house appliances. In contrast to other energy sources solar installations are distributed very decentralized and spread over hundred-thousands of locations. On a global level more than 25% of solar photovoltaic (PV) installations were decentralized. The effect of the quick energy transition from a carbon based economy to a green economy is though still very difficult to quantify. As a matter of fact the quick adoption of solar panels by households is difficult to track, with local registries that miss a large number of the newly built solar panels. This makes the task of assessing the impact of renewable energies an impossible task. Although models of the output of a region exist, they are often black box estimations. This project's aim is twofold: First automate the process to extract the location of solar panels from aerial or satellite images and second, produce a map of solar panels along with statistics on the number of solar panels. Further, this project takes place in a wider framework which investigates how official statistics can benefit from new digital data sources. At project completion, a method for detecting solar panels from aerial images via machine learning will be developed and the methodology initially developed for BE, DE and NL will be standardized for application to other EU countries. In practice, machine learning techniques are used to identify solar panels in satellite and aerial images for the province of Limburg (NL), Flanders (BE) and North Rhine-Westphalia (DE).Comment: This document provides the reader with an overview of the various datasets which will be used throughout the project. The collection of satellite and aerial images as well as auxiliary information such as the location of buildings and roofs which is required to train, test and validate the machine learning algorithm that is being develope

    ESA - RESGROW: Epansion of the Market for EO Based Information Services in Renewable Energy - Biomass Energy sector

    Get PDF
    Biomass energy is of growing importance as it is widely recognised, both scientifically and politically, that the increase of atmospheric CO2 has led to an enhanced efficiency of the greenhouse effect and, as such, warrants concern for climate change. It is accepted (IPCC 2011 and just recently in the draft version of the IPCC 2013 report) that climate change is partly induced by humans notably by using fossil fuels. For reducing the use of oil or coal, biomass energy is receiving more and more attention as an additional energy source available regionally in large parts of the world. Effective management of renewable energy resources is critical for the European and the global energy supply system. The future contribution of bioenergy to the energy supply strongly depends on its availability, in other words the biomass potential. Biomass potentials are currently mainly assessed on a national to regional or on a global level, with the bulk biomass potential allocated to the whole country. With certain biomass fractions being of low energy density, transport distances and thus their spatial distribution are crucial economic and ecological factors. For other biomass fractions a super-regional or global market is envisaged. Thus spatial information on biomass potentials is vital for the further expansion of bioenergy use. This study, which is an updated version of a study carried out in 2007 in frame of the ENVISOLAR project, analyses the potential use of Earth Observation data as input for biomass models in order to assessment and manage of the biomass energy resources especially biomass potentials of agricultural and forest areas with high spatial resolution (typical 1km x 1km). In addition to a sorrow review of recent developments in data availability and approaches in comparison to its 2007’ version, this study also includes a review on approaches to directly correlate remote sensing data with biomass estimations. An overview of existing biomass models is given covering models using remote sensing data as input as well as models using only meteorological and/or management data as input. It covers the full life cycle from the planning stage to plant management and operations (Figure 1). Several groups of stakeholders were identified

    The Data Fusion Grid Infrastructure: Project Objectives and Achievements

    Get PDF
    This paper describes the objectives and achievements of the project "Data Fusion Grid Infrastructure'' jointly supported by INTAS, the Centre National d'Etudes Spatiales (CNES) and the National Space Agency of Ukraine (NSAU). Within the project, a Grid infrastructure has been developed that integrates the resources of several geographically distributed organizations. The use of Grid technologies is motivated by the need to make computations in the near real-time for fast response to natural disasters and to manage large volumes of satellite data. We show the use of developed Grid infrastructure for a number of applications that heavily rely on Earth observation (EO) data. These applications include: numerical weather prediction (NWP), flood monitoring, biodiversity assessment, and crop yield prediction

    A gap analysis of Internet-of-Things platforms

    Full text link
    We are experiencing an abundance of Internet-of-Things (IoT) middleware solutions that provide connectivity for sensors and actuators to the Internet. To gain a widespread adoption, these middleware solutions, referred to as platforms, have to meet the expectations of different players in the IoT ecosystem, including device providers, application developers, and end-users, among others. In this article, we evaluate a representative sample of these platforms, both proprietary and open-source, on the basis of their ability to meet the expectations of different IoT users. The evaluation is thus more focused on how ready and usable these platforms are for IoT ecosystem players, rather than on the peculiarities of the underlying technological layers. The evaluation is carried out as a gap analysis of the current IoT landscape with respect to (i) the support for heterogeneous sensing and actuating technologies, (ii) the data ownership and its implications for security and privacy, (iii) data processing and data sharing capabilities, (iv) the support offered to application developers, (v) the completeness of an IoT ecosystem, and (vi) the availability of dedicated IoT marketplaces. The gap analysis aims to highlight the deficiencies of today's solutions to improve their integration to tomorrow's ecosystems. In order to strengthen the finding of our analysis, we conducted a survey among the partners of the Finnish IoT program, counting over 350 experts, to evaluate the most critical issues for the development of future IoT platforms. Based on the results of our analysis and our survey, we conclude this article with a list of recommendations for extending these IoT platforms in order to fill in the gaps.Comment: 15 pages, 4 figures, 3 tables, Accepted for publication in Computer Communications, special issue on the Internet of Things: Research challenges and solution
    • …
    corecore