169 research outputs found

    Analysis of synchronous localization systems for UAVs urban applications

    Get PDF
    [EN] Unmanned-Aerial-Vehicles (UAVs) represent an active research topic over multiple fields for performing inspection, delivery and surveillance applications among other operations. However, achieving the utmost efficiency requires drones to perform these tasks without the need of human intervention, which demands a robust and accurate localization system for achieving a safe and efficient autonomous navigation. Nevertheless, currently used satellite-based localization systems like GPS are insufficient for high-precision applications, especially in harsh scenarios like indoor and deep urban environments. In these contexts, Local Positioning Systems (LPS) have been widely proposed for satisfying the localization requirements of these vehicles. However, the performance of LPS is highly dependent on the actual localization architecture and the spatial disposition of the deployed sensor distribution. Therefore, before the deployment of an extensive localization network, an analysis regarding localization architecture and sensor distribution should be taken into consideration for the task at hand. Nonetheless, no actual study is proposed either for comparing localization architectures or for attaining a solution for the Node Location Problem (NLP), a problem of NP-Hard complexity. Therefore, in this paper, we propose a comparison among synchronous LPS for determining the most suited system for localizing UAVs over urban scenarios. We employ the Cràmer–Rao-Bound (CRB) for evaluating the performance of each localization system, based on the provided error characterization of each synchronous architecture. Furthermore, in order to attain the optimal sensor distribution for each architecture, a Black-Widow-Optimization (BWO) algorithm is devised for the NLP and the application at hand. The results obtained denote the effectiveness of the devised technique and recommend the implementation of Time Difference Of Arrival (TDOA) over Time of Arrival (TOA) systems, attaining up to 47% less localization uncertainty due to the unnecessary synchronization of the target clock with the architecture sensors in the TDOA architecture.S

    TW-TOA based positioning in the presence of clock imperfections

    Get PDF
    This manuscript studies the positioning problem based on two-way time-of-arrival (TW-TOA) measurements in semi-asynchronous wireless sensor networks in which the clock of a target node is unsynchronized with the reference time. Since the optimal estimator for this problem involves difficult nonconvex optimization, two suboptimal estimators are proposed based on the squared-range least squares and the least absolute mean of residual errors. We formulated the former approach as an extended general trust region subproblem (EGTR) and propose a simple technique to solve it approximately. The latter approach is formulated as a difference of convex functions programming (DCP), which can be solved using a concave–convex procedure. Simulation results illustrate the high performance of the proposed techniques, especially for the DCP approach

    TDOA based positioning in the presence of unknown clock skew

    Get PDF
    Cataloged from PDF version of article.This paper studies the positioning problem of a single target node based on time-difference-of-arrival (TDOA) measurements in the presence of clock imperfections. Employing an affine model for the behaviour of a local clock, it is observed that TDOA based approaches suffer from a parameter of the model, called the clock skew. Modeling the clock skew as a nuisance parameter, this paper investigates joint clock skew and position estimation. The maximum likelihood estimator (MLE) is derived for this problem, which is highly nonconvex and difficult to solve. To avoid the difficulty in solving the MLE, we employ suitable approximations and relaxations and propose two suboptimal estimators based on semidefinite programming and linear estimation. To further improve the estimation accuracy, we also propose a refining step. In addition, the Cramer-Rao ÂŽ lower bound (CRLB) is derived for this problem as a benchmark. Simulation results show that the proposed suboptimal estimators can attain the CRLB for sufficiently high signal-to-noise ratios

    TIME SYNCHRONIZATION FOR TIME OF ARRIVAL BASED LOCALIZATION

    Get PDF
    ABSTRAC

    TDOA Based Positioning in the Presence of Unknown Clock Skew

    Get PDF
    This paper studies the positioning problem of a single target node based on time-difference-of-arrival (TDOA) measurements in the presence of clock imperfections. Employing an affine model for the behaviour of a local clock, it is observed that TDOA based approaches suffer from a parameter of the model, called the clock skew. Modeling the clock skew as a nuisance parameter, this paper investigates joint clock skew and position estimation. The maximum likelihood estimator (MLE) is derived for this problem, which is highly nonconvex and difficult to solve. To avoid the difficulty in solving the MLE, we employ suitable approximations and relaxations and propose two suboptimal estimators based on semidefinite programming and linear estimation. To further improve the estimation accuracy, we also propose a refining step. In addition, the Cramér-Rao lower bound (CRLB) is derived for this problem as a benchmark. Simulation results show that the proposed suboptimal estimators can attain the CRLB for sufficiently high signal-to-noise ratios

    Hybrid UWB-Inertial TDoA-based Target Tracking with Concentrated Anchors

    Get PDF
    In this paper, hybrid radio/inertial mobile target tracking for accurate and smooth path estimation is considered. The proposed tracking approach builds upon an Ultra WideBand (UWB)-based positioning algorithm, based on the Linear Hyperbolic Positioning System (LinHPS), with Time Difference of Arrival (TDoA) processing and anchors concentrated on a single hotspot at the center of the environment where the target moves. First, we design an Adaptive Radio-based Extended Kalman Filter (AREKF), which does not require a priori statistical knowledge of the noise in the target movement model and estimates the measurement noise covariance, at each sampling time, according to a proper LookUp Table (LUT). In order to improve the performance of AREKF, we incorporate inertial data collected from the target and propose three “hybrid” radio/inertial algorithms, denoted as Hybrid Inertial Measurement Unit (IMU)-aided Radio-based EKF (HIREKF), Hybrid Noisy Control EKF (HNCEKF), and Hybrid Control EKF (HCEKF). Our results on experimentally acquired paths show that the proposed algorithms achieve an average instantaneous position estimation error on the order of a few centimeters. Moreover, the minimum target path length estimation error, obtained with HCEKF, is on the order of 6% and 1% for two paths with lengths equal to approximately 17 m and 46 m, respectively

    Bidirectional UWB Localization: A Review on an Elastic Positioning Scheme for GNSS-deprived Zones

    Full text link
    A bidirectional Ultra-Wideband (UWB) localization scheme is one of the three widely deployed design integration processes ordinarily destined for time-based UWB positioning systems. The key property of the bidirectional UWB localization is its ability to serve both the navigation and tracking assignments on-demand within a single localization scheme. Conventionally, the perspective of navigation and tracking in wireless localization systems is viewed distinctly as an individual system because different methodologies were required for the implementation process. The ability to flexibly or elastically combine two unique positioning perspectives (i.e., navigation and tracking) within a single scheme is a paradigm shift in the way location-based services are observed. Thus, this article addresses and pinpoints the potential of a bidirectional UWB localization scheme. Regarding this, the complete system model of the bidirectional UWB localization scheme was comprehensively described based on modular processes in this article. The demonstrative evaluation results based on two system integration processes as well as a SWOT (strengths, weaknesses, opportunities, and threats) analysis of the scheme were also discussed. Moreover, we argued that the presented bidirectional scheme can also be used as a prospective topology for the realization of precise location estimation processes in 5G/6G wireless mobile networks, as well as Wi-Fi fine-time measurement-based positioning systems in this article.Comment: 30 pages, 12 figure

    An accurate RSS/AoA-based localization method for internet of underwater things

    Get PDF
    Localization is an important issue for Internet of Underwater Things (IoUT) since the performance of a large number of underwater applications highly relies on the position information of underwater sensors. In this paper, we propose a hybrid localization approach based on angle-of-arrival (AoA) and received signal strength (RSS) for IoUT. We consider a smart fishing scenario in which using the proposed approach fishers can find fishes’ locations effectively. The proposed method collects the RSS observation and estimates the AoA based on error variance. To have a more realistic deployment, we assume that the perfect noise information is not available. Thus, a minimax approach is provided in order to optimize the worst-case performance and enhance the estimation accuracy under the unknown parameters. Furthermore, we analyze the mismatch of the proposed estimator using mean-square error (MSE). We then develop semidefinite programming (SDP) based method which relaxes the non-convex constraints into the convex constraints to solve the localization problem in an efficient way. Finally, the Cramer–Rao lower bounds (CRLBs) are derived to bound the performance of the RSS-based estimator. In comparison with other localization schemes, the proposed method increases localization accuracy by more than 13%. Our method can localize 96% of sensor nodes with less than 5% positioning error when there exist 25% anchors
    • 

    corecore