647 research outputs found

    Towards a sender-based TCP friendly rate control (TFRC) protocol

    Get PDF
    Pervasive communications are increasingly sent over mobile devices and personal digital assistants. This trend is currently observed by mobile phone service providers which have measured a significant increase in multimedia traffic. To better carry multimedia traffic, the IETF standardized a new TCP Friendly Rate Control (TFRC) protocol. However, the current receiver-based TFRC design is not well suited to resource limited end systems. In this paper, we propose a scheme to shift resource allocation and computation to the sender. This sender-based approach led us to develop a new algorithm for loss notification and loss-rate computation. We detail the complete implementation of a user-level prototype and demonstrate the gain obtained in terms of memory requirements and CPU processing compared to the current design. We also evaluate the performance obtained in terms of throughput smoothness and fairness with TCP and we note this shifting solves security issues raised by classical TFRC implementations

    A Survey on TCP-Friendly Congestion Control (extended version)

    Full text link
    New trends in communication, in particular the deployment of multicast and real-time audio/video streaming applications, are likely to increase the percentage of non-TCP traffic in the Internet. These applications rarely perform congestion control in a TCP-friendly manner, i.e., they do not share the available bandwidth fairly with applications built on TCP, such as web browsers, FTP- or email-clients. The Internet community strongly fears that the current evolution could lead to a congestion collapse and starvation of TCP traffic. For this reason, TCP-friendly protocols are being developed that behave fairly with respect to co-existent TCP flows. In this article, we present a survey of current approaches to TCP-friendliness and discuss their characteristics. Both unicast and multicast congestion control protocols are examined, and an evaluation of the different approaches is presented

    Adaptive filtering of MPEG system streams in IP networks

    Get PDF
    Congestion and large differences in available link bandwidth create challenges for the design of applications that want to deliver high quality video over the Internet. We present an efficient adaptive filter for MPEG System streams that can be placed in the network (e.g., as an active service). This filter adjusts the bandwidth demands of an MPEG System stream to the available bandwidth without transcoding while maintaining synchronization between the streams embedded in the MPEG System. The filter is network-friendly: it is fair with respect to other (TCP) competing streams and it avoids generating bursty traffic. This paper presents the system architecture and an evaluation of our implementation in three different operating environments: a networking testbed in a laboratory environment, a home-user scenario (DSL line with 640Kbit/s), and a wide area network covering the Atlantic (server in Europe, client in the US). Moreover we examine the network-friendliness of the adaptation protocol and the relationship between the quality of the received continuous media and the protocol's aggressiveness. Our architecture is based on efficient MPEG System filtering to achieve high-quality video over best-effort network

    Control of transport dynamics in overlay networks

    Get PDF
    Transport control is an important factor in the performance of Internet protocols, particularly in the next generation network applications involving computational steering, interactive visualization, instrument control, and transfer of large data sets. The widely deployed Transport Control Protocol is inadequate for these tasks due to its performance drawbacks. The purpose of this dissertation is to conduct a rigorous analytical study on the design and performance of transport protocols, and systematically develop a new class of protocols to overcome the limitations of current methods. Various sources of randomness exist in network performance measurements due to the stochastic nature of network traffic. We propose a new class of transport protocols that explicitly accounts for the randomness based on dynamic stochastic approximation methods. These protocols use congestion window and idle time to dynamically control the source rate to achieve transport objectives. We conduct statistical analyses to determine the main effects of these two control parameters and their interaction effects. The application of stochastic approximation methods enables us to show the analytical stability of the transport protocols and avoid pre-selecting the flow and congestion control parameters. These new protocols are successfully applied to transport control for both goodput stabilization and maximization. The experimental results show the superior performance compared to current methods particularly for Internet applications. To effectively deploy these protocols over the Internet, we develop an overlay network, which resides at the application level to provide data transmission service using User Datagram Protocol. The overlay network, together with the new protocols based on User Datagram Protocol, provides an effective environment for implementing transport control using application-level modules. We also study problems in overlay networks such as path bandwidth estimation and multiple quickest path computation. In wireless networks, most packet losses are caused by physical signal losses and do not necessarily indicate network congestion. Furthermore, the physical link connectivity in ad-hoc networks deployed in unstructured areas is unpredictable. We develop the Connectivity-Through-Time protocols that exploit the node movements to deliver data under dynamic connectivity. We integrate this protocol into overlay networks and present experimental results using network to support a team of mobile robots

    Improved algorithms for TCP congestion control

    Get PDF
    Reliable and efficient data transfer on the Internet is an important issue. Since late 70’s the protocol responsible for that has been the de facto standard TCP, which has proven to be successful through out the years, its self-managed congestion control algorithms have retained the stability of the Internet for decades. However, the variety of existing new technologies such as high-speed networks (e.g. fibre optics) with high-speed long-delay set-up (e.g. cross-Atlantic links) and wireless technologies have posed lots of challenges to TCP congestion control algorithms. The congestion control research community proposed solutions to most of these challenges. This dissertation adds to the existing work by: firstly tackling the highspeed long-delay problem of TCP, we propose enhancements to one of the existing TCP variants (part of Linux kernel stack). We then propose our own variant: TCP-Gentle. Secondly, tackling the challenge of differentiating the wireless loss from congestive loss in a passive way and we propose a novel loss differentiation algorithm which quantifies the noise in packet inter arrival times and use this information together with the span (ratio of maximum to minimum packet inter arrival times) to adapt the multiplicative decrease factor according to a predefined logical formula. Finally, extending the well-known drift model of TCP to account for wireless loss and some hypothetical cases (e.g. variable multiplicative decrease), we have undertaken stability analysis for the new version of the model

    Handoff Characterization of Multipath Video Streaming

    Get PDF
    Video streaming has become the major source of Internet traffic nowadays. Considering that content delivery network providers utilize Video over Hypertext Transfer Protocol/ Transmission Control Protocol (HTTP/TCP) as the preferred protocol stack for video streaming, understanding TCP performance in transporting video streams has become paramount. Recently, multipath transport protocols have allowed streaming of video over multiple paths. In this paper, we analyze the impact of handoffs on multipath video streaming and network performance on WiFi and cellular paths. We utilize network performance measures, as well as video quality metrics, to characterize the performance and interaction between network and application layers of video data for various network scenarios.Twelfth International Conference on Evolving Internet (INTERNET 2020), October 18-22, 2020, Porto, Portuga
    • 

    corecore