1,051 research outputs found

    Deflection Routing Strategies for Optical Burst Switching Networks: Contemporary Affirmation of the Recent Literature

    Get PDF
    A promising option to raising busty interchange in system communication could be Optical Burst Switched (OBS) networks among scalable and support routing effective. The routing schemes with disputation resolution got much interest, because the OBS network is buffer less in character. Because the deflection steering can use limited optical buffering or actually no buffering thus the choice or deflection routing techniques can be critical. Within this paper we investigate the affirmation of the current literature on alternate (deflection) routing strategies accessible for OBS networks

    Performance issues in optical burst/packet switching

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-01524-3_8This chapter summarises the activities on optical packet switching (OPS) and optical burst switching (OBS) carried out by the COST 291 partners in the last 4 years. It consists of an introduction, five sections with contributions on five different specific topics, and a final section dedicated to the conclusions. Each section contains an introductive state-of-the-art description of the specific topic and at least one contribution on that topic. The conclusions give some points on the current situation of the OPS/OBS paradigms

    JTP: An Energy-conscious Transport Protocol for Wireless Ad Hoc Networks

    Full text link
    Within a recently developed low-power ad hoc network system, we present a transport protocol (JTP) whose goal is to reduce power consumption without trading off delivery requirements of applications. JTP has the following features: it is lightweight whereby end-nodes control in-network actions by encoding delivery requirements in packet headers; JTP enables applications to specify a range of reliability requirements, thus allocating the right energy budget to packets; JTP minimizes feedback control traffic from the destination by varying its frequency based on delivery requirements and stability of the network; JTP minimizes energy consumption by implementing in-network caching and increasing the chances that data retransmission requests from destinations "hit" these caches, thus avoiding costly source retransmissions; and JTP fairly allocates bandwidth among flows by backing off the sending rate of a source to account for in-network retransmissions on its behalf. Analysis and extensive simulations demonstrate the energy gains of JTP over one-size-fits-all transport protocols.Defense Advanced Research Projects Agency (AFRL FA8750-06-C-0199

    Prelude: Ensuring Inter-Domain Loop-Freedom in~SDN-Enabled Networks

    Full text link
    Software-Defined-eXchanges (SDXes) promise to tackle the timely quest of bringing improving the inter-domain routing ecosystem through SDN deployment. Yet, the naive deployment of SDN on the Internet raises concerns about the correctness of the inter-domain data-plane. By allowing operators to deflect traffic from the default BGP route, SDN policies are susceptible of creating permanent forwarding loops invisible to the control-plane. In this paper, we propose a system, called Prelude, for detecting SDN-induced forwarding loops between SDXes with high accuracy without leaking the private routing information of network operators. To achieve this, we leverage Secure Multi-Party Computation (SMPC) techniques to build a novel and general privacy-preserving primitive that detects whether any subset of SDN rules might affect the same portion of traffic without learning anything about those rules. We then leverage that primitive as the main building block of a distributed system tailored to detect forwarding loops among any set of SDXes. We leverage the particular nature of SDXes to further improve the efficiency of our SMPC solution. The number of valid SDN rules, i.e., not creating loops, rejected by our solution is 100x lower than previous privacy-preserving solutions, and also provides better privacy guarantees. Furthermore, our solution naturally provides network operators with some hindsight on the cost of the deflected paths

    Patterns and Interactions in Network Security

    Full text link
    Networks play a central role in cyber-security: networks deliver security attacks, suffer from them, defend against them, and sometimes even cause them. This article is a concise tutorial on the large subject of networks and security, written for all those interested in networking, whether their specialty is security or not. To achieve this goal, we derive our focus and organization from two perspectives. The first perspective is that, although mechanisms for network security are extremely diverse, they are all instances of a few patterns. Consequently, after a pragmatic classification of security attacks, the main sections of the tutorial cover the four patterns for providing network security, of which the familiar three are cryptographic protocols, packet filtering, and dynamic resource allocation. Although cryptographic protocols hide the data contents of packets, they cannot hide packet headers. When users need to hide packet headers from adversaries, which may include the network from which they are receiving service, they must resort to the pattern of compound sessions and overlays. The second perspective comes from the observation that security mechanisms interact in important ways, with each other and with other aspects of networking, so each pattern includes a discussion of its interactions.Comment: 63 pages, 28 figures, 56 reference

    A zero burst loss architecture for star OBS networks

    Get PDF
    Performance studies point to the fact that in an OBS network, the link utilization has to be kept very low in order for the burst loss probability to be within an acceptable level. Various congestion control schemes have been proposed, such as the use of converters, fiber delay lines, and deflection routing. However, these schemes do not alleviate this problem. It is our position that in order for OBS to become commercially viable, new schemes have to be devised that will either guarantee zero burst loss, or very low burst loss at high utilization. In a previous paper, we described effective zero burst loss schemes for OBS rings. In this paper, we present a zero burst loss scheme for star OBS topologies. Further research into the topic is required.5th IFIP International Conference on Network Control & Engineering for QoS, Security and MobilityRed de Universidades con Carreras en Informática (RedUNCI
    • …
    corecore