5,742 research outputs found

    Beyond socket options: making the Linux TCP stack truly extensible

    Full text link
    The Transmission Control Protocol (TCP) is one of the most important protocols in today's Internet. Its specification and implementations have been refined for almost forty years. The Linux TCP stack is one of the most widely used TCP stacks given its utilisation on servers and Android smartphones and tablets. However, TCP and its implementations evolve very slowly. In this paper, we demonstrate how to leverage the eBPF virtual machine that is part of the recent versions of the Linux kernel to make the TCP stack easier to extend. We demonstrate a variety of use cases where the eBPF code is injected inside a running kernel to update or tune the TCP implementation. We first implement the TCP User Timeout Option. Then we propose a new option that enables a client to request a server to use a specific congestion control scheme. Our third extension is a TCP option that sets the initial congestion window. We then demonstrate how eBPF code can be used to tune the acknowledgment strategy.Comment: 9 pages, 8 figure

    Beyond socket options: making the Linux TCP stack truly extensible

    Get PDF
    The Transmission Control Protocol (TCP) is one of the most important protocols in today's Internet. Its specification and implementations have been refined for almost forty years. The Linux TCP stack is one of the most widely used TCP stacks given its utilisation on servers and Android smartphones and tablets. However, TCP and its implementations evolve very slowly. In this paper, we demonstrate how to leverage the eBPF virtual machine that is part of the recent versions of the Linux kernel to make the TCP stack easier to extend. We demonstrate a variety of use cases where the eBPF code is injected inside a running kernel to update or tune the TCP implementation. We first implement the TCP User Timeout Option. Then we propose a new option that enables a client to request a server to use a specific congestion control scheme. Our third extension is a TCP option that sets the initial congestion window. We then demonstrate how eBPF code can be used to tune the acknowledgment strategy.Comment: 9 pages, 8 figure

    Unicast UDP Usage Guidelines for Application Designers

    Get PDF
    Publisher PD

    WS-ARC service configuration manual

    Get PDF
    The central component of AR

    TCP over CDMA2000 Networks: A Cross-Layer Measurement Study

    Full text link
    Modern cellular channels in 3G networks incorporate sophisticated power control and dynamic rate adaptation which can have significant impact on adaptive transport layer protocols, such as TCP. Though there exists studies that have evaluated the performance of TCP over such networks, they are based solely on observations at the transport layer and hence have no visibility into the impact of lower layer dynamics, which are a key characteristic of these networks. In this work, we present a detailed characterization of TCP behavior based on cross-layer measurement of transport layer, as well as RF and MAC layer parameters. In particular, through a series of active TCP/UDP experiments and measurement of the relevant variables at all three layers, we characterize both, the wireless scheduler and the radio link protocol in a commercial CDMA2000 network and assess their impact on TCP dynamics. Somewhat surprisingly, our findings indicate that the wireless scheduler is mostly insensitive to channel quality and sector load over short timescales and is mainly affected by the transport layer data rate. Furthermore, with the help of a robust correlation measure, Normalized Mutual Information, we were able to quantify the impact of the wireless scheduler and the radio link protocol on various TCP parameters such as the round trip time, throughput and packet loss rate

    Performance of Bursty World Wide Web (WWW) Sources over ABR

    Full text link
    We model World Wide Web (WWW) servers and clients running over an ATM network using the ABR (available bit rate) service. The WWW servers are modeled using a variant of the SPECweb96 benchmark, while the WWW clients are based on a model by Mah. The traffic generated by this application is typically bursty, i.e., it has active and idle periods in transmission. A timeout occurs after given amount of idle period. During idle period the underlying TCP congestion windows remain open until a timeout expires. These open windows may be used to send data in a burst when the application becomes active again. This raises the possibility of large switch queues if the source rates are not controlled by ABR. We study this problem and show that ABR scales well with a large number of bursty TCP sources in the system.Comment: Submitted to WebNet `97, Toronto, November 9

    TCP smart framing: a segmentation algorithm to reduce TCP latency

    Get PDF
    TCP Smart Framing, or TCP-SF for short, enables the Fast Retransmit/Recovery algorithms even when the congestion window is small. Without modifying the TCP congestion control based on the additive-increase/multiplicative-decrease paradigm, TCP-SF adopts a novel segmentation algorithm: while Classic TCP always tries to send full-sized segments, a TCP-SF source adopts a more flexible segmentation algorithm to try and always have a number of in-flight segments larger than 3 so as to enable Fast Recovery. We motivate this choice by real traffic measurements, which indicate that today's traffic is populated by short-lived flows, whose only means to recover from a packet loss is by triggering a Retransmission Timeout. The key idea of TCP-SF can be implemented on top of any TCP flavor, from Tahoe to SACK, and requires modifications to the server TCP stack only, and can be easily coupled with recent TCP enhancements. The performance of the proposed TCP modification were studied by means of simulations, live measurements and an analytical model. In addition, the analytical model we have devised has a general scope, making it a valid tool for TCP performance evaluation in the small window region. Improvements are remarkable under several buffer management schemes, and maximized by byte-oriented schemes

    Performance analysis of next generation web access via satellite

    Get PDF
    Acknowledgements This work was partially funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 644334 (NEAT). The views expressed are solely those of the author(s).Peer reviewedPostprin
    corecore