381 research outputs found

    Satellite-3G Hybrid Networks: Impact of ACM and ARQ on TCP Performance

    Get PDF
    The adoption of satellite systems in providing broadband transmissions to mobile users such as trains, buses and vans is expected to be an interesting solution. The scenario we considered refers to a hybrid network architecture, where a geostationary satellite forward link and a terrestrial 3G return link are used in order to exploit both the high bandwidth of a satellite channel and the lower propagation delay of a terrestrial path. The resulting round-trip delay is much shorter than that one experienced by using both the forward and return link via satellite. This is particularly appealing for overcoming the TCP efficiency degradation in high delay-bandwidth product and error prone channels. In this hybrid scenario, we used simulation results to compare the goodput of four of the most popular TCP variants, in the presence of a GOOD-BAD satellite channel, as the one experienced by mobile users. We applied an Adaptive Coding and Modulation (ACM) technique as well, and studied its impact on TCP efficiency, when used both alone and in cooperation with an Automatic Repeat reQuest (ARQ) scheme of the Selective Repeat (SR) type with low persistency. Results obtained indicate that this hybrid architecture is advantageous for TCP transmissions in terms of average goodput, and that ACM is effective only if it is jointly used with ARQ schemes

    On the impact of link layer retransmission schemes on TCP over 4G satellite links

    Get PDF
    We study the impact of reliability mechanisms introduced at the link layer on the performance of transport protocols in the context of 4G satellite links. Specifically, we design a software module that performs realistic analysis of the network performance, by utilizing real physical layer traces of a 4G satellite service. Based on these traces, our software module produces equivalent link layer traces, as a function of the chosen link layer reliability mechanism. We further utilize the link layer traces within the ns-2 network simulator to evaluate the impact of link layer schemes on the performance of selected Transmission Control Protocol (TCP) variants. We consider erasure coding, selective-repeat automatic request (ARQ) and hybrid-ARQ link layer mechanisms, and TCP Cubic, Compound, Hybla, New Reno and Westwood. We show that, for all target TCP variants, when the throughput of the transport protocol is close to the channel capacity, using the ARQ mechanism is most beneficial for TCP performance improvement. In conditions where the physical channel error rate is high, hybrid-ARQ results in the best performance for all TCP variants considered, with up to 22% improvements compared to other schemes

    CLIFT: a Cross-Layer InFormation Tool for Latency Analysis Based on Real Satellite Physical Traces

    Get PDF
    New mobile technology generations succeed in achieving high goodput, which results in diverse applications profiles exploiting various resource providers (Wifi, 4G, 5G, . . . ). Badly set parameters on one of the network component may severely impact on the transmission delay and reduce the quality of experience. The cross layer impact should be investigated on to assess the origin of latency. To run cross-layer (from physical layer to application layers) simulations, two approaches are possible: (1) use physical layer models that may not be exhaustive enough to drive consistent analysis or (2) use real physical traces. Driving realistic measurements by using real physical (MAC/PHY) traces inside network simulations is a complex task. We propose to cope with this problem by introducing Cross Layer InFormation Tool (CLIFT), that translates real physical events from a given trace in order to be used inside a network simulator such as ns-2. Our proposal enables to accurately perform analysis of the impact of link layer reliability schemes (obtained by the use of real physical traces) on transport layer performance and on the latency. Such approach enables a better understanding of the interactions between the layers. The main objective of CLIFT is to let us study the protocols introduced at each layer of the OSI model and study their interaction. We detail the internal mechanisms and the benefits of this software with a running example on 4G satellite communications scenarios

    Packet Loss in Terrestrial Wireless and Hybrid Networks

    Get PDF
    The presence of both a geostationary satellite link and a terrestrial local wireless link on the same path of a given network connection is becoming increasingly common, thanks to the popularity of the IEEE 802.11 protocol. The most common situation where a hybrid network comes into play is having a Wi-Fi link at the network edge and the satellite link somewhere in the network core. Example of scenarios where this can happen are ships or airplanes where Internet connection on board is provided through a Wi-Fi access point and a satellite link with a geostationary satellite; a small office located in remote or isolated area without cabled Internet access; a rescue team using a mobile ad hoc Wi-Fi network connected to the Internet or to a command centre through a mobile gateway using a satellite link. The serialisation of terrestrial and satellite wireless links is problematic from the point of view of a number of applications, be they based on video streaming, interactive audio or TCP. The reason is the combination of high latency, caused by the geostationary satellite link, and frequent, correlated packet losses caused by the local wireless terrestrial link. In fact, GEO satellites are placed in equatorial orbit at 36,000 km altitude, which takes the radio signal about 250 ms to travel up and down. Satellite systems exhibit low packet loss most of the time, with typical project constraints of 10−8 bit error rate 99% of the time, which translates into a packet error rate of 10−4, except for a few days a year. Wi-Fi links, on the other hand, have quite different characteristics. While the delay introduced by the MAC level is in the order of the milliseconds, and is consequently too small to affect most applications, its packet loss characteristics are generally far from negligible. In fact, multipath fading, interference and collisions affect most environments, causing correlated packet losses: this means that often more than one packet at a time is lost for a single fading even

    Satellite-3G Hybrid Networks: Impact of ACM and ARQ on TCP Performance

    Get PDF
    The adoption of satellite systems in providing broadband transmissions to mobile users such as trains, buses and vans is expected to be an interesting solution. The scenariowe considered refers to a hybrid network architecture, where a geostationary satellite forward link and a terrestrial 3G return link are used in order to exploit both the high bandwidth of a satellite channel and the lower propagation delay of a terrestrial path. The resulting round-trip delay is much shorter than that one experienced by using both the forward and return link via satellite. This is particularly appealing for overcoming the TCP efficiency degradation in high delay-bandwidth product and error prone channels. In this hybrid scenario, we used simulation results to compare the goodput of four of the most popular TCP variants, in the presence of a GOOD-BAD satellite channel, as the one experienced by mobile users. We applied an AdaptiveCoding and Modulation (ACM) technique as well, and studied its impact on TCP efficiency, when used both alone and in cooperation with an Automatic Repeat reQuest (ARQ) scheme of the Selective Repeat (SR) type with low persistency. Results obtained indicate that this hybrid architecture is advantageous for TCP transmissions in terms of average goodput, and that ACM is effective only if it is jointly used with ARQ schemes

    A Model-based Scalable Reliable Multicast Transport Protocol for Satellite Networks

    Get PDF
    In this paper, we design a new scalable reliable multicast transport protocol for satellite networks (RMT). This paper is the extensions of paper in [18]. The proposed protocol does not require inspection and/or interception of packets at intermediate nodes. The protocol would not require any modification of satellites, which could be bent pipe satellites or onboard processing satellites. The proposed protocol is divided in 2 parts: error control part and congestion control part. In error control part, we intend to solve feedback implosion and improve scalability by using a new hybrid of ARQ (Auto Repeat Request) and adaptive forward error correction (AFEC). The AFEC algorithm adapts proactive redundancy levels following the number of receivers and average packet loss rate. This leads to a number of transmissions and the number of feedback signals are virtually independent of the number of receivers. Therefore, wireless link utilization used by the proposed protocol is virtually independent of the number of multicast receivers. In congestion control part, the proposed protocol employs a new window-based congestion control scheme, which is optimized for satellite networks. To be fair to the other traffics, the congestion control mimics congestion control in the wellknown Transmission Control Protocol (TCP) which relies on “packet conservation” principle. To reduce feedback implosion, only a few receivers, ACKers, are selected to report the receiving status. In addition, in order to avoid “drop-to-zero” problem, we use a new simple wireless loss filter algorithm. This loss filter algorithm significantly reduces the probability of the congestion window size to be unnecessarily reduced because of common wireless losses. Furthermore, to improve achievable throughput, we employ slow start threshold adaptation based on estimated bandwidth. The congestion control also deals with variations in network conditions by dynamically electing ACKers
    corecore