2,053 research outputs found

    Designing and Implimentation of Spatial IP Address Assignment Scheme for a Wireless Network

    Get PDF
    Wireless sensor networks are composed of large numbers up to thousands of tiny radio- equipped sensors. Every sensor has a small microprocessor with enough power to allow the sensors to autonomously form networks through which sensor information is gathered. Wireless sensor networks makes it possible to monitor places like nuclear disaster areas or volcano craters without requiring humans to be immediately present. Many wireless sensor network applications cannot be performed in isolation; the sensor network must somehow be connected to monitoring and controlling entities. This research paper investigates a novel approach for connecting sensor networks to existing networks: by using the TCP/IP protocol suite in the sensor network, the sensors can be directly connected to an outside network without the need for special proxy servers or protocol converters. Bringing TCP/IP to wireless sensor networks is a challenging task, however. First, because of their limited physical size and low cost, sensors are severely constrained in terms of memory and processing power. Traditionally, these constraints have been considered too limiting for a sensor to be able to use the TCP/IP protocols. In this research paper, I show that even tiny sensors can communicate using TCP/IP. Second, the harsh communication conditions make TCP/IP perform poorly in terms of both throughput and energy efficiency. With this research paper, I suggest a number of optimizations that are intended to increase the performance of TCP/IP for sensor networks. The results of the work presented in this research paper have a significant impact on the embedded TCP/IP networking community. The software evolves as part of the research paper has become widely known in the community. The software is mentioned in books on embedded systems and networking, is used in academic courses on embedded systems, is the focus of articles in professional magazines, is incorporated in embedded operating systems, and is used in a

    Demo Abstract: Augmenting Reality with IP-based Sensor Networks

    Get PDF
    We demonstrate low-power IP-based sensor networks by showing a system that interacts with the sensor network using a RESTful web service interface. The sensor data is displayed with overlaid 3D graphics on top of a live camera feed, so-called augmented reality. The augmented reality application is built with off-the-shelf components with no sensor network-specific code. The IP-based sensor network runs the Contiki operating system

    milliProxy: a TCP Proxy Architecture for 5G mmWave Cellular Systems

    Full text link
    TCP is the most widely used transport protocol in the internet. However, it offers suboptimal performance when operating over high bandwidth mmWave links. The main issues introduced by communications at such high frequencies are (i) the sensitivity to blockage and (ii) the high bandwidth fluctuations due to Line of Sight (LOS) to Non Line of Sight (NLOS) transitions and vice versa. In particular, TCP has an abstract view of the end-to-end connection, which does not properly capture the dynamics of the wireless mmWave link. The consequence is a suboptimal utilization of the available resources. In this paper we propose a TCP proxy architecture that improves the performance of TCP flows without any modification at the remote sender side. The proxy is installed in the Radio Access Network, and exploits information available at the gNB in order to maximize throughput and minimize latency.Comment: 7 pages, 6 figures, 2 tables, presented at the 2017 51st Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 201

    RESTful Wireless Sensor Networks

    Get PDF
    Sensor networks have diverse structures and generally employ proprietary protocols to gather useful information about the physical world. This diversity generates problems to interact with these sensors since custom APIs are needed which are tedious, error prone and have steep learning curve. In this thesis, I present RESThing, a lightweight REST framework for wireless sensor networks to ease the process of interacting with these sensors by making them accessible over the Web. I evaluate the system and show that it is feasible to support widely used and standard Web protocols in wireless sensor networks. Being able to integrate these tiny devices seamlessly into the global information medium, we can achieve the Web of Things

    TCP in the Internet of Things: from ostracism to prominence

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.TCP has traditionally been neglected as a transport-layer protocol for the Internet of Things (IoT). However, recent trends and industry needs are favoring TCP presence in IoT environments. In this article, we describe the main IoT scenarios where TCP will be used. We then analyze the historically claimed issues of TCP in the IoT context. We argue that, in contrast to generally accepted wisdom, most of those possible issues fall in one of the following categories: i) are also found in well-accepted IoT end-to-end reliability mechanisms, ii) can be solved, or iii) are not actual issues. Considering the future prominent role of TCP in the IoT, we provide recommendations for lightweight TCP implementation and suitable operation in such scenarios, based on our IETF standardization work on the topic.Postprint (author's final draft

    Experiences from porting the Contiki operating system to a popular hardware platform

    Get PDF
    In contrast to original belief, recent work has demonstrated the viability of IPv6-based Wireless Sensor Networks (WSNs). This has led to significant research and standardization efforts with outcomes such as the "IPv6 over Low-Power Wireless Personal Area Networks " (6LoWPAN) specification. The Contiki embedded operating system is an important open source, multi-platform effort to implement 6LoWPAN functionality for constrained devices. Alongside its RFC-compliant TCP/IP stack (uIP), it provides support for 6LoWPAN and many related standards. As part of our work, we have made considerable fixes and enhancements to one of Contiki's ports. In the process, we made significant optimizations and a thorough evaluation of Contiki's memory and code footprint characteristics, focusing on network-related functionality. In this paper we present our experiences from the porting process, we disclose our optimizations and demonstrate their significance. Lastly, we discuss a method of using Contiki to deploy an embedded Internet-to-6LoWPAN router. Our porting work has been made available to the community under the terms of the Contiki license

    Old Wine in New Skins? Revisiting the Software Architecture for IP Network Stacks on Constrained IoT Devices

    Get PDF
    In this paper, we argue that existing concepts for the design and implementation of network stacks for constrained devices do not comply with the requirements of current and upcoming Internet of Things (IoT) use cases. The IoT requires not only a lightweight but also a modular network stack, based on standards. We discuss functional and non-functional requirements for the software architecture of the network stack on constrained IoT devices. Then, revisiting concepts from the early Internet as well as current implementations, we propose a future-proof alternative to existing IoT network stack architectures, and provide an initial evaluation of this proposal based on its implementation running on top of state-of-the-art IoT operating system and hardware.Comment: 6 pages, 2 figures and table
    • 

    corecore