27 research outputs found

    TC^0 Circuits for Algorithmic Problems in Nilpotent Groups

    Get PDF
    Recently, Macdonald et. al. showed that many algorithmic problems for finitely generated nilpotent groups including computation of normal forms, the subgroup membership problem, the conjugacy problem, and computation of subgroup presentations can be done in LOGSPACE. Here we follow their approach and show that all these problems are complete for the uniform circuit class TC^0 - uniformly for all r-generated nilpotent groups of class at most c for fixed r and c. Moreover, if we allow a certain binary representation of the inputs, then the word problem and computation of normal forms is still in uniform TC^0, while all the other problems we examine are shown to be TC^0-Turing reducible to the problem of computing greatest common divisors and expressing them as linear combinations

    The Complexity of Knapsack Problems in Wreath Products

    Get PDF
    We prove new complexity results for computational problems in certain wreath products of groups and (as an application) for free solvable group. For a finitely generated group we study the so-called power word problem (does a given expression u1k1…udkdu_1^{k_1} \ldots u_d^{k_d}, where u1,…,udu_1, \ldots, u_d are words over the group generators and k1,…,kdk_1, \ldots, k_d are binary encoded integers, evaluate to the group identity?) and knapsack problem (does a given equation u1x1…udxd=vu_1^{x_1} \ldots u_d^{x_d} = v, where u1,…,ud,vu_1, \ldots, u_d,v are words over the group generators and x1,…,xdx_1,\ldots,x_d are variables, has a solution in the natural numbers). We prove that the power word problem for wreath products of the form G≀ZG \wr \mathbb{Z} with GG nilpotent and iterated wreath products of free abelian groups belongs to TC0\mathsf{TC}^0. As an application of the latter, the power word problem for free solvable groups is in TC0\mathsf{TC}^0. On the other hand we show that for wreath products G≀ZG \wr \mathbb{Z}, where GG is a so called uniformly strongly efficiently non-solvable group (which form a large subclass of non-solvable groups), the power word problem is coNP\mathsf{coNP}-hard. For the knapsack problem we show NP\mathsf{NP}-completeness for iterated wreath products of free abelian groups and hence free solvable groups. Moreover, the knapsack problem for every wreath product G≀ZG \wr \mathbb{Z}, where GG is uniformly efficiently non-solvable, is Σp2\Sigma^2_p-hard

    The Power Word Problem

    Get PDF
    In this work we introduce a new succinct variant of the word problem in a finitely generated group G, which we call the power word problem: the input word may contain powers p^x, where p is a finite word over generators of G and x is a binary encoded integer. The power word problem is a restriction of the compressed word problem, where the input word is represented by a straight-line program (i.e., an algebraic circuit over G). The main result of the paper states that the power word problem for a finitely generated free group F is AC^0-Turing-reducible to the word problem for F. Moreover, the following hardness result is shown: For a wreath product G Wr Z, where G is either free of rank at least two or finite non-solvable, the power word problem is complete for coNP. This contrasts with the situation where G is abelian: then the power word problem is shown to be in TC^0

    Groups with ALOGTIME-Hard Word Problems and PSPACE-Complete Circuit Value Problems

    Get PDF
    corecore