6,209 research outputs found

    Logic and Topology for Knowledge, Knowability, and Belief - Extended Abstract

    Get PDF
    In recent work, Stalnaker proposes a logical framework in which belief is realized as a weakened form of knowledge. Building on Stalnaker's core insights, and using frameworks developed by Bjorndahl and Baltag et al., we employ topological tools to refine and, we argue, improve on this analysis. The structure of topological subset spaces allows for a natural distinction between what is known and (roughly speaking) what is knowable; we argue that the foundational axioms of Stalnaker's system rely intuitively on both of these notions. More precisely, we argue that the plausibility of the principles Stalnaker proposes relating knowledge and belief relies on a subtle equivocation between an "evidence-in-hand" conception of knowledge and a weaker "evidence-out-there" notion of what could come to be known. Our analysis leads to a trimodal logic of knowledge, knowability, and belief interpreted in topological subset spaces in which belief is definable in terms of knowledge and knowability. We provide a sound and complete axiomatization for this logic as well as its uni-modal belief fragment. We then consider weaker logics that preserve suitable translations of Stalnaker's postulates, yet do not allow for any reduction of belief. We propose novel topological semantics for these irreducible notions of belief, generalizing our previous semantics, and provide sound and complete axiomatizations for the corresponding logics.Comment: In Proceedings TARK 2017, arXiv:1707.08250. The full version of this paper, including the longer proofs, is at arXiv:1612.0205

    Relating Knowledge and Coordinated Action: The Knowledge of Preconditions Principle

    Get PDF
    The Knowledge of Preconditions principle (KoP) is proposed as a widely applicable connection between knowledge and action in multi-agent systems. Roughly speaking, it asserts that if some condition is a necessary condition for performing a given action A, then knowing that this condition holds is also a necessary condition for performing A. Since the specifications of tasks often involve necessary conditions for actions, the KoP principle shows that such specifications induce knowledge preconditions for the actions. Distributed protocols or multi-agent plans that satisfy the specifications must ensure that this knowledge be attained, and that it is detected by the agents as a condition for action. The knowledge of preconditions principle is formalised in the runs and systems framework, and is proven to hold in a wide class of settings. Well-known connections between knowledge and coordinated action are extended and shown to derive directly from the KoP principle: a "common knowledge of preconditions" principle is established showing that common knowledge is a necessary condition for performing simultaneous actions, and a "nested knowledge of preconditions" principle is proven, showing that coordinating actions to be performed in linear temporal order requires a corresponding form of nested knowledge.Comment: In Proceedings TARK 2015, arXiv:1606.0729

    What Drives People's Choices in Turn-Taking Games, if not Game-Theoretic Rationality?

    Get PDF
    In an earlier experiment, participants played a perfect information game against a computer, which was programmed to deviate often from its backward induction strategy right at the beginning of the game. Participants knew that in each game, the computer was nevertheless optimizing against some belief about the participant's future strategy. In the aggregate, it appeared that participants applied forward induction. However, cardinal effects seemed to play a role as well: a number of participants might have been trying to maximize expected utility. In order to find out how people really reason in such a game, we designed centipede-like turn-taking games with new payoff structures in order to make such cardinal effects less likely. We ran a new experiment with 50 participants, based on marble drop visualizations of these revised payoff structures. After participants played 48 test games, we asked a number of questions to gauge the participants' reasoning about their own and the opponent's strategy at all decision nodes of a sample game. We also checked how the verbalized strategies fit to the actual choices they made at all their decision points in the 48 test games. Even though in the aggregate, participants in the new experiment still tend to slightly favor the forward induction choice at their first decision node, their verbalized strategies most often depend on their own attitudes towards risk and those they assign to the computer opponent, sometimes in addition to considerations about cooperativeness and competitiveness.Comment: In Proceedings TARK 2017, arXiv:1707.0825

    Uncertainties in the solar photospheric oxygen abundance

    Full text link
    The purpose of this work is to better understand the confidence limits of the photospheric solar oxygen abundance derived from three-dimensional models using the forbidden [OI] line at 6300 \AA , including correlations with other parameters involved. We worked with a three-dimensional empirical model and two solar intensity atlases. We employed Bayesian inference as a tool to determine the most probable value for the solar oxygen abundance given the model chosen. We considered a number of error sources, such as uncertainties in the continuum derivation, in the wavelength calibration and in the abundance/strength of Ni. Our results shows correlations between the effects of several parameters employed in the derivation. The Bayesian analysis provides robust confidence limits taking into account all of these factors in a rigorous manner. We obtain that, given the empirical three-dimensional model and the atlas observations employed here, the most probable value for the solar oxygen abundance is log(ϵO)=8.86±0.04\log(\epsilon_O) = 8.86\pm0.04. However, we note that this uncertainty does not consider possible sources of systematic errors due to the model choice.Comment: Accepted for publication in Astronomy and Astrophysic
    corecore