1,856 research outputs found

    Min-max results in combinatorial optimization

    Get PDF

    Avoiding the Global Sort: A Faster Contour Tree Algorithm

    Get PDF
    We revisit the classical problem of computing the \emph{contour tree} of a scalar field f:MRf:\mathbb{M} \to \mathbb{R}, where M\mathbb{M} is a triangulated simplicial mesh in Rd\mathbb{R}^d. The contour tree is a fundamental topological structure that tracks the evolution of level sets of ff and has numerous applications in data analysis and visualization. All existing algorithms begin with a global sort of at least all critical values of ff, which can require (roughly) Ω(nlogn)\Omega(n\log n) time. Existing lower bounds show that there are pathological instances where this sort is required. We present the first algorithm whose time complexity depends on the contour tree structure, and avoids the global sort for non-pathological inputs. If CC denotes the set of critical points in M\mathbb{M}, the running time is roughly O(vClogv)O(\sum_{v \in C} \log \ell_v), where v\ell_v is the depth of vv in the contour tree. This matches all existing upper bounds, but is a significant improvement when the contour tree is short and fat. Specifically, our approach ensures that any comparison made is between nodes in the same descending path in the contour tree, allowing us to argue strong optimality properties of our algorithm. Our algorithm requires several novel ideas: partitioning M\mathbb{M} in well-behaved portions, a local growing procedure to iteratively build contour trees, and the use of heavy path decompositions for the time complexity analysis

    The Salesman's Improved Tours for Fundamental Classes

    Full text link
    Finding the exact integrality gap α\alpha for the LP relaxation of the metric Travelling Salesman Problem (TSP) has been an open problem for over thirty years, with little progress made. It is known that 4/3α3/24/3 \leq \alpha \leq 3/2, and a famous conjecture states α=4/3\alpha = 4/3. For this problem, essentially two "fundamental" classes of instances have been proposed. This fundamental property means that in order to show that the integrality gap is at most ρ\rho for all instances of metric TSP, it is sufficient to show it only for the instances in the fundamental class. However, despite the importance and the simplicity of such classes, no apparent effort has been deployed for improving the integrality gap bounds for them. In this paper we take a natural first step in this endeavour, and consider the 1/21/2-integer points of one such class. We successfully improve the upper bound for the integrality gap from 3/23/2 to 10/710/7 for a superclass of these points, as well as prove a lower bound of 4/34/3 for the superclass. Our methods involve innovative applications of tools from combinatorial optimization which have the potential to be more broadly applied
    corecore