12,282 research outputs found

    Satisfiability in multi-valued circuits

    Full text link
    Satisfiability of Boolean circuits is among the most known and important problems in theoretical computer science. This problem is NP-complete in general but becomes polynomial time when restricted either to monotone gates or linear gates. We go outside Boolean realm and consider circuits built of any fixed set of gates on an arbitrary large finite domain. From the complexity point of view this is strictly connected with the problems of solving equations (or systems of equations) over finite algebras. The research reported in this work was motivated by a desire to know for which finite algebras A\mathbf A there is a polynomial time algorithm that decides if an equation over A\mathbf A has a solution. We are also looking for polynomial time algorithms that decide if two circuits over a finite algebra compute the same function. Although we have not managed to solve these problems in the most general setting we have obtained such a characterization for a very broad class of algebras from congruence modular varieties. This class includes most known and well-studied algebras such as groups, rings, modules (and their generalizations like quasigroups, loops, near-rings, nonassociative rings, Lie algebras), lattices (and their extensions like Boolean algebras, Heyting algebras or other algebras connected with multi-valued logics including MV-algebras). This paper seems to be the first systematic study of the computational complexity of satisfiability of non-Boolean circuits and solving equations over finite algebras. The characterization results provided by the paper is given in terms of nice structural properties of algebras for which the problems are solvable in polynomial time.Comment: 50 page

    The geometry of blueprints. Part I: Algebraic background and scheme theory

    Get PDF
    In this paper, we introduce the category of blueprints, which is a category of algebraic objects that include both commutative (semi)rings and commutative monoids. This generalization allows a simultaneous treatment of ideals resp.\ congruences for rings and monoids and leads to a common scheme theory. In particular, it bridges the gap between usual schemes and F1\mathbb{F}_1-schemes (after Kato, Deitmar and Connes-Consani). Beside this unification, the category of blueprints contains new interesting objects as "improved" cyclotomic field extensions F1n\mathbb{F}_{1^n} of F1\mathbb{F}_1 and "archimedean valuation rings". It also yields a notion of semiring schemes. This first paper lays the foundation for subsequent projects, which are devoted to the following problems: Tits' idea of Chevalley groups over F1\mathbb{F}_1, congruence schemes, sheaf cohomology, KK-theory and a unified view on analytic geometry over F1\mathbb{F}_1, adic spaces (after Huber), analytic spaces (after Berkovich) and tropical geometry.Comment: Slightly revised and extended version as in print. 51 page

    On closure operators and reflections in Goursat categories

    Get PDF
    By defining a closure operator on effective equivalence relations in a regular category CC, it is possible to establish a bijective correspondence between these closure operators and the regular epireflective subcategories LL of CC. When CC is an exact Goursat category this correspondence restricts to a bijection between the Birkhoff closure operators on effective equivalence relations and the Birkhoff subcategories of CC. In this case it is possible to provide an explicit description of the closure, and to characterise the congruence distributive Goursat categories.Comment: 14 pages. Accepted for publication in "Rendiconti dell'Istituto Matematico di Trieste

    Growth of generating sets for direct powers of classical algebraic structures

    Get PDF
    For an algebraic structure A denote by d(A) the smallest size of a generating set for A, and let d(A)=(d(A),d(A2),d(A3),ā€¦), where An denotes a direct power of A. In this paper we investigate the asymptotic behaviour of the sequence d(A) when A is one of the classical structuresā€”a group, ring, module, algebra or Lie algebra. We show that if A is finite then d(A) grows either linearly or logarithmically. In the infinite case constant growth becomes another possibility; in particular, if A is an infinite simple structure belonging to one of the above classes then d(A) is eventually constant. Where appropriate we frame our exposition within the general theory of congruence permutable varieties.Publisher PDFPeer reviewe
    • ā€¦
    corecore