4,373 research outputs found

    Design and Implementation of Takagi-Sugeno Fuzzy Tracking Control for a DC-DC Buck Converter

    Get PDF
    This paper presents the design and implementation of a Takagi-Sugeno (T-S) fuzzy controller for a DC-DC buck converter using Arduino board. The proposed fuzzy controller is able to pilot the states of the buck converter to track a reference model. The T-S fuzzy model is employed, firstly, to represent exactly the dynamics of the nonlinear buck converter system, and then the considered controller is designed on the basis of a concept called Virtual Desired Variables (VDVs). In this case, a two-stage design procedure is developed: i) determine the reference model according to the desired output voltage, ii) determine the fuzzy controller gains by solving a set of Linear Matrix Inequalities (LMIs). A digital implementation of the proposed T-S fuzzy controller is carried out using the ATmega328P-based Microcontroller of the Arduino Uno board. Simulations and experimental results demonstrate the validity and effectiveness of the proposed control scheme

    Closed-Form Critical Conditions of Subharmonic Oscillations for Buck Converters

    Full text link
    A general critical condition of subharmonic oscillation in terms of the loop gain is derived. Many closed-form critical conditions for various control schemes in terms of converter parameters are also derived. Some previously known critical conditions become special cases in the generalized framework. Given an arbitrary control scheme, a systematic procedure is proposed to derive the critical condition for that control scheme. Different control schemes share similar forms of critical conditions. For example, both V2 control and voltage mode control have the same form of critical condition. A peculiar phenomenon in average current mode control where subharmonic oscillation occurs in a window value of pole can be explained by the derived critical condition. A ripple amplitude index to predict subharmonic oscillation proposed in the past research has limited application and is shown invalid for a converter with a large pole.Comment: Submitted to an IEEE Journal on Dec. 23, 2011, and resubmitted to IEEE Transactions on Circuits and Systems-I on Feb. 14, 2012. My current six papers in arXiv have a common reviewe

    Realization of a 10 kW MES power to methane plant based on unified AC/DC converter

    Get PDF
    This paper presents a galvanic isolated multi output AC/DC topology that is suitable for Microbial electrosynthesis (MES) based Power to Methane energy storage systems. The presented scheme utilizes a three phase back to back converters, a single-input and multiple-output three phase transformer, single diode rectifiers and buck converters that employ a proper interconnection between MES cells and the mains. The proposed topology merges all the required single phase AC/DC converters as a unified converter which reduces the overall system size and provides system integrity and overall controllability. The proposed control scheme allows to achieve the following desired goals:1) Simultaneous control of all cells; 2) Absorbing power from the grid and covert to methane when the electricity price goes down; 3) the power factor and the quality of grid current is under control; 4) Supplying MES cells at the optimal operating point. For verification of system performance, Real time simulation results that are obtained from a 10-kW MES energy storage are presented.Postprint (author's final draft
    corecore