583,524 research outputs found

    Chronopotentiometric study of the transport of phosphoric acid anions through an anion-exchange membrane under different pH values

    Full text link
    [EN] Phosphate is the main cause of eutrophication in many water bodies. Its presence in waters is associated to the fact that is not completely removed in conventional wastewater treatment plants. On the other side, phosphate rocks are a non-renewable resource and considered as a critical raw material. A membrane separation process, able to recover phosphate from wastewater, is a promising process to avoid pollution and to reuse phosphate. This paper investigates the transport of salts of phosphoric acid through an anion-exchange membrane (AEM) by means of chronopotentiograms and polarization curves (CVCs). The presence of multiple transition times in the chronopotentiograms and the corresponding limiting current densities in the CVCs indicate a change in the species being transported in the membrane/diffusion boundary layer system, due to the hydrolysis reactions that take place when the concentration polarization is reached. Under the experimental conditions tested, coupled convection (gravitational and elctroconvection) occurs when a certain threshold in the membrane voltage drop is surpassed independently of the electrolyte concentration. However, at high pH values, only one transition time in the chronopotentiograms, due to the transfer of OH- ions with greater concentration and mobility. This fact is reflected in the CVCs by the large plateaus obtained, which hinders the occurrence of coupled convection phenomena, and consequently, water splitting can be considered as the main mechanism responsible for the overlimiting regime.The authors wish to thank the financial support from FINEP, FAPERGS, CAPES and CNPq (Brazil), from the BRICS-STI/CNPq (BRICS STI Framework Programme), from the European Union through the Erasmus Mundus Program (EBW +) and from the CYTED (Network 318RT0551).Gally, C.; GarcĂ­a GabaldĂłn, M.; Ortega Navarro, EM.; Bernardes, A.; PĂ©rez-Herranz, V. (2020). Chronopotentiometric study of the transport of phosphoric acid anions through an anion-exchange membrane under different pH values. Separation and Purification Technology. 238:1-10. https://doi.org/10.1016/j.seppur.2019.116421S110238Cordell, D., Drangert, J.-O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292-305. doi:10.1016/j.gloenvcha.2008.10.009Cordell, D., Rosemarin, A., Schröder, J. J., & Smit, A. L. (2011). Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere, 84(6), 747-758. doi:10.1016/j.chemosphere.2011.02.032Van Vuuren, D. P., Bouwman, A. F., & Beusen, A. H. W. (2010). Phosphorus demand for the 1970–2100 period: A scenario analysis of resource depletion. Global Environmental Change, 20(3), 428-439. doi:10.1016/j.gloenvcha.2010.04.004Gilbert, N. (2009). Environment: The disappearing nutrient. Nature, 461(7265), 716-718. doi:10.1038/461716aHao, X., Wang, C., van Loosdrecht, M. C. M., & Hu, Y. (2013). Looking Beyond Struvite for P-Recovery. Environmental Science & Technology, 47(10), 4965-4966. doi:10.1021/es401140sArnaldos, M., & Pagilla, K. (2010). Effluent dissolved organic nitrogen and dissolved phosphorus removal by enhanced coagulation and microfiltration. Water Research, 44(18), 5306-5315. doi:10.1016/j.watres.2010.06.066Babatunde, A. O., & Zhao, Y. Q. (2010). Equilibrium and kinetic analysis of phosphorus adsorption from aqueous solution using waste alum sludge. Journal of Hazardous Materials, 184(1-3), 746-752. doi:10.1016/j.jhazmat.2010.08.102Kralchevska, R. P., Prucek, R., Kolaƙík, J., Tuček, J., Machala, L., Filip, J., 
 Zboƙil, R. (2016). Remarkable efficiency of phosphate removal: Ferrate(VI)-induced in situ sorption on core-shell nanoparticles. Water Research, 103, 83-91. doi:10.1016/j.watres.2016.07.021Maher, C., Neethling, J. B., Murthy, S., & Pagilla, K. (2015). Kinetics and capacities of phosphorus sorption to tertiary stage wastewater alum solids, and process implications for achieving low-level phosphorus effluents. Water Research, 85, 226-234. doi:10.1016/j.watres.2015.08.025Furuya, K., Hafuka, A., Kuroiwa, M., Satoh, H., Watanabe, Y., & Yamamura, H. (2017). Development of novel polysulfone membranes with embedded zirconium sulfate-surfactant micelle mesostructure for phosphate recovery from water through membrane filtration. Water Research, 124, 521-526. doi:10.1016/j.watres.2017.08.005Zhang, Y., Desmidt, E., Van Looveren, A., Pinoy, L., Meesschaert, B., & Van der Bruggen, B. (2013). Phosphate Separation and Recovery from Wastewater by Novel Electrodialysis. Environmental Science & Technology, 47(11), 5888-5895. doi:10.1021/es4004476Valverde-PĂ©rez, B., WĂĄgner, D. S., LĂłrĂĄnt, B., GĂŒlay, A., Smets, B. F., & PlĂłsz, B. G. (2016). Short-sludge age EBPR process – Microbial and biochemical process characterisation during reactor start-up and operation. Water Research, 104, 320-329. doi:10.1016/j.watres.2016.08.026Chen, X., Zhou, H., Zuo, K., Zhou, Y., Wang, Q., Sun, D., 
 Huang, X. (2017). Self-sustaining advanced wastewater purification and simultaneous in situ nutrient recovery in a novel bioelectrochemical system. Chemical Engineering Journal, 330, 692-697. doi:10.1016/j.cej.2017.07.130Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review. Critical Reviews in Environmental Science and Technology, 39(6), 433-477. doi:10.1080/10643380701640573Ueno, Y., & Fujii, M. (2001). Three Years Experience of Operating and Selling Recovered Struvite from Full-Scale Plant. Environmental Technology, 22(11), 1373-1381. doi:10.1080/09593332208618196Battistoni, P., Boccadoro, R., Fatone, F., & Pavan, P. (2005). Auto-Nucleation and Crystal Growth of Struvite in a Demonstrative Fluidized Bed Reactor (FBR). Environmental Technology, 26(9), 975-982. doi:10.1080/09593332608618486Liu, R., Wang, Y., Wu, G., Luo, J., & Wang, S. (2017). Development of a selective electrodialysis for nutrient recovery and desalination during secondary effluent treatment. Chemical Engineering Journal, 322, 224-233. doi:10.1016/j.cej.2017.03.149Ren, S., Li, M., Sun, J., Bian, Y., Zuo, K., Zhang, X., 
 Huang, X. (2017). A novel electrochemical reactor for nitrogen and phosphorus recovery from domestic wastewater. Frontiers of Environmental Science & Engineering, 11(4). doi:10.1007/s11783-017-0983-xWimalasiri, Y., Mossad, M., & Zou, L. (2015). Thermodynamics and kinetics of adsorption of ammonium ions by graphene laminate electrodes in capacitive deionization. Desalination, 357, 178-188. doi:10.1016/j.desal.2014.11.015Huang, G.-H., Chen, T.-C., Hsu, S.-F., Huang, Y.-H., & Chuang, S.-H. (2013). Capacitive deionization (CDI) for removal of phosphate from aqueous solution. Desalination and Water Treatment, 52(4-6), 759-765. doi:10.1080/19443994.2013.826331Wang, X., Wang, Y., Zhang, X., Feng, H., Li, C., & Xu, T. (2013). Phosphate Recovery from Excess Sludge by Conventional Electrodialysis (CED) and Electrodialysis with Bipolar Membranes (EDBM). Industrial & Engineering Chemistry Research, 52(45), 15896-15904. doi:10.1021/ie4014088Ebbers, B., Ottosen, L. M., & Jensen, P. E. (2015). Electrodialytic treatment of municipal wastewater and sludge for the removal of heavy metals and recovery of phosphorus. Electrochimica Acta, 181, 90-99. doi:10.1016/j.electacta.2015.04.097Pismenskaya, N., Nikonenko, V., Auclair, B., & Pourcelly, G. (2001). Transport of weak-electrolyte anions through anion exchange membranes. Journal of Membrane Science, 189(1), 129-140. doi:10.1016/s0376-7388(01)00405-7Belashova, E. D., Kharchenko, O. A., Sarapulova, V. V., Nikonenko, V. V., & Pismenskaya, N. D. (2017). Effect of Protolysis Reactions on the Shape of Chronopotentiograms of a Homogeneous Anion-Exchange Membrane in NaH2PO4 Solution. Petroleum Chemistry, 57(13), 1207-1218. doi:10.1134/s0965544117130035Belashova, E. D., Pismenskaya, N. D., Nikonenko, V. V., Sistat, P., & Pourcelly, G. (2017). Current-voltage characteristic of anion-exchange membrane in monosodium phosphate solution. Modelling and experiment. Journal of Membrane Science, 542, 177-185. doi:10.1016/j.memsci.2017.08.002Melnikova, E. D., Pismenskaya, N. D., Bazinet, L., Mikhaylin, S., & Nikonenko, V. V. (2018). Effect of ampholyte nature on current-voltage characteristic of anion-exchange membrane. Electrochimica Acta, 285, 185-191. doi:10.1016/j.electacta.2018.07.186Paltrinieri, L., Poltorak, L., Chu, L., Puts, T., van Baak, W., Sudhölter, E. J. R., & de Smet, L. C. P. M. (2018). Hybrid polyelectrolyte-anion exchange membrane and its interaction with phosphate. Reactive and Functional Polymers, 133, 126-135. doi:10.1016/j.reactfunctpolym.2018.10.005Rybalkina, O., Tsygurina, K., Melnikova, E., Mareev, S., Moroz, I., Nikonenko, V., & Pismenskaya, N. (2019). Partial Fluxes of Phosphoric Acid Anions through Anion-Exchange Membranes in the Course of NaH2PO4 Solution Electrodialysis. International Journal of Molecular Sciences, 20(14), 3593. doi:10.3390/ijms20143593MartĂ­-Calatayud, M. C., Buzzi, D. C., GarcĂ­a-GabaldĂłn, M., Bernardes, A. M., TenĂłrio, J. A. S., & PĂ©rez-Herranz, V. (2014). Ion transport through homogeneous and heterogeneous ion-exchange membranes in single salt and multicomponent electrolyte solutions. Journal of Membrane Science, 466, 45-57. doi:10.1016/j.memsci.2014.04.033Benvenuti, T., GarcĂ­a-GabaldĂłn, M., Ortega, E. M., Rodrigues, M. A. S., Bernardes, A. M., PĂ©rez-Herranz, V., & Zoppas-Ferreira, J. (2017). Influence of the co-ions on the transport of sulfate through anion exchange membranes. Journal of Membrane Science, 542, 320-328. doi:10.1016/j.memsci.2017.08.021Ray, P., Shahi, V. K., Pathak, T. V., & Ramachandraiah, G. (1999). Transport phenomenon as a function of counter and co-ions in solution: chronopotentiometric behavior of anion exchange membrane in different aqueous electrolyte solutions. Journal of Membrane Science, 160(2), 243-254. doi:10.1016/s0376-7388(99)00088-5MartĂ­-Calatayud, M. C., GarcĂ­a-GabaldĂłn, M., PĂ©rez-Herranz, V., & Ortega, E. (2011). Determination of transport properties of Ni(II) through a Nafion cation-exchange membrane in chromic acid solutions. Journal of Membrane Science, 379(1-2), 449-458. doi:10.1016/j.memsci.2011.06.014Marder, L., Ortega Navarro, E. M., PĂ©rez-Herranz, V., Bernardes, A. M., & Ferreira, J. Z. (2006). Evaluation of transition metals transport properties through a cation-exchange membrane by chronopotentiometry. Journal of Membrane Science, 284(1-2), 267-275. doi:10.1016/j.memsci.2006.07.039Herraiz-Cardona, I., Ortega, E., & PĂ©rez-Herranz, V. (2010). Evaluation of the Zn2+ transport properties through a cation-exchange membrane by chronopotentiometry. Journal of Colloid and Interface Science, 341(2), 380-385. doi:10.1016/j.jcis.2009.09.053MartĂ­-Calatayud, M. C., GarcĂ­a-GabaldĂłn, M., & PĂ©rez-Herranz, V. (2012). Study of the effects of the applied current regime and the concentration of chromic acid on the transport of Ni2+ ions through Nafion 117 membranes. Journal of Membrane Science, 392-393, 137-149. doi:10.1016/j.memsci.2011.12.012Pismenskaia, N., Sistat, P., Huguet, P., Nikonenko, V., & Pourcelly, G. (2004). Chronopotentiometry applied to the study of ion transfer through anion exchange membranes. Journal of Membrane Science, 228(1), 65-76. doi:10.1016/j.memsci.2003.09.012Taky, M., Pourcelly, G., Lebon, F., & Gavach, C. (1992). Polarization phenomena at the interfaces between an electrolyte solution and an ion exchange membrane. Journal of Electroanalytical Chemistry, 336(1-2), 171-194. doi:10.1016/0022-0728(92)80270-eNikonenko, V. V., Pismenskaya, N. D., Belova, E. I., Sistat, P., Huguet, P., Pourcelly, G., & Larchet, C. (2010). Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis. Advances in Colloid and Interface Science, 160(1-2), 101-123. doi:10.1016/j.cis.2010.08.001Krol, J. (1999). Concentration polarization with monopolar ion exchange membranes: currentĂą voltage curves and water dissociation. Journal of Membrane Science, 162(1-2), 145-154. doi:10.1016/s0376-7388(99)00133-7Larchet, C., Nouri, S., Auclair, B., Dammak, L., & Nikonenko, V. (2008). Application of chronopotentiometry to determine the thickness of diffusion layer adjacent to an ion-exchange membrane under natural convection. Advances in Colloid and Interface Science, 139(1-2), 45-61. doi:10.1016/j.cis.2008.01.007Scarazzato, T., Panossian, Z., GarcĂ­a-GabaldĂłn, M., Ortega, E. M., TenĂłrio, J. A. S., PĂ©rez-Herranz, V., & Espinosa, D. C. R. (2017). Evaluation of the transport properties of copper ions through a heterogeneous ion-exchange membrane in etidronic acid solutions by chronopotentiometry. Journal of Membrane Science, 535, 268-278. doi:10.1016/j.memsci.2017.04.048Zook, J. M., Bodor, S., GyurcsĂĄnyi, R. E., & Lindner, E. (2010). Interpretation of chronopotentiometric transients of ion-selective membranes with two transition times. Journal of Electroanalytical Chemistry, 638(2), 254-261. doi:10.1016/j.jelechem.2009.11.007MartĂ­-Calatayud, M. C., GarcĂ­a-GabaldĂłn, M., & PĂ©rez-Herranz, V. (2013). Effect of the equilibria of multivalent metal sulfates on the transport through cation-exchange membranes at different current regimes. Journal of Membrane Science, 443, 181-192. doi:10.1016/j.memsci.2013.04.058Maletzki, F., Rösler, H.-W., & Staude, E. (1992). Ion transfer across electrodialysis membranes in the overlimiting current range: stationary voltage current characteristics and current noise power spectra under different conditions of free convection. Journal of Membrane Science, 71(1-2), 105-116. doi:10.1016/0376-7388(92)85010-gElena I. Belova, Galina Yu. Lopatkova, Natalia D. Pismenskaya, Victor V. Nikonenko, and Christian Larchet, G. Pourcelly, Effect of Anion-exchange Membrane Surface Properties on Mechanisms of Overlimiting Mass Transfer, (2006). doi:10.1021/JP062433F.Nikonenko, V. V., Kovalenko, A. V., Urtenov, M. K., Pismenskaya, N. D., Han, J., Sistat, P., & Pourcelly, G. (2014). Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination, 342, 85-106. doi:10.1016/j.desal.2014.01.008Liu, X., Vlugt, T. J. H., & Bardow, A. (2011). Predictive Darken Equation for Maxwell-Stefan Diffusivities in Multicomponent Mixtures. Industrial & Engineering Chemistry Research, 50(17), 10350-10358. doi:10.1021/ie201008aElattar, A., Elmidaoui, A., Pismenskaia, N., Gavach, C., & Pourcelly, G. (1998). Comparison of transport properties of monovalent anions through anion-exchange membranes. Journal of Membrane Science, 143(1-2), 249-261. doi:10.1016/s0376-7388(98)00013-1Choi, J.-H., Lee, H.-J., & Moon, S.-H. (2001). Effects of Electrolytes on the Transport Phenomena in a Cation-Exchange Membrane. Journal of Colloid and Interface Science, 238(1), 188-195. doi:10.1006/jcis.2001.7510Agmon, N. (1995). The Grotthuss mechanism. Chemical Physics Letters, 244(5-6), 456-462. doi:10.1016/0009-2614(95)00905-jChen, C., Tse, Y.-L. S., Lindberg, G. E., Knight, C., & Voth, G. A. (2016). Hydroxide Solvation and Transport in Anion Exchange Membranes. Journal of the American Chemical Society, 138(3), 991-1000. doi:10.1021/jacs.5b11951Wang, C., Mo, B., He, Z., Xie, X., Zhao, C. X., Zhang, L., 
 Guo, Z. (2018). Hydroxide ions transportation in polynorbornene anion exchange membrane. Polymer, 138, 363-368. doi:10.1016/j.polymer.2018.01.079Pismenskaya, N. D., Nikonenko, V. V., Belova, E. I., Lopatkova, G. Y., Sistat, P., Pourcelly, G., & Larshe, K. (2007). Coupled convection of solution near the surface of ion-exchange membranes in intensive current regimes. Russian Journal of Electrochemistry, 43(3), 307-327. doi:10.1134/s102319350703010xPis’menskaya, N. D., Nikonenko, V. V., Mel’nik, N. A., Pourcelli, G., & Larchet, G. (2012). Effect of the ion-exchange-membrane/solution interfacial characteristics on the mass transfer at severe current regimes. Russian Journal of Electrochemistry, 48(6), 610-628. doi:10.1134/s1023193512060092Belova, E., Lopatkova, G., Pismenskaya, N., Nikonenko, V., & Larchet, C. (2006). Role of water splitting in development of electroconvection in ion-exchange membrane systems. Desalination, 199(1-3), 59-61. doi:10.1016/j.desal.2006.03.14

    Comparison of Local Analysis Strategies for Exudate Detection in Fundus Images

    Full text link
    Diabetic Retinopathy (DR) is a severe and widely spread eye disease. Exudates are one of the most prevalent signs during the early stage of DR and an early detection of these lesions is vital to prevent the patient’s blindness. Hence, detection of exudates is an important diagnostic task of DR, in which computer assistance may play a major role. In this paper, a system based on local feature extraction and Support Vector Machine (SVM) classification is used to develop and compare different strategies for automated detection of exudates. The main novelty of this work is allowing the detection of exudates using non-regular regions to perform the local feature extraction. To accomplish this objective, different methods for generating superpixels are applied to the fundus images of E-OPHTA database and texture and morphological features are extracted for each of the resulting regions. An exhaustive comparison among the proposed methods is also carried out.This paper was supported by the European Union’s Horizon 2020 research and innovation programme under the Project GALAHAD [H2020-ICT2016-2017, 732613]. The work of AdriÂŽan Colomer has been supported by the Spanish Government under a FPI Grant [BES-2014-067889]. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.Pereira, J.; Colomer, A.; Naranjo Ornedo, V. (2018). Comparison of Local Analysis Strategies for Exudate Detection in Fundus Images. En Intelligent Data Engineering and Automated Learning – IDEAL 2018. Springer. 174-183. https://doi.org/10.1007/978-3-030-03493-1_19S174183SidibĂ©, D., Sadek, I., MĂ©riaudeau, F.: Discrimination of retinal images containing bright lesions using sparse coded features and SVM. Comput. Biol. Med. 62, 175–184 (2015)Zhou, W., Wu, C., Yi, Y., Du, W.: Automatic detection of exudates in digital color fundus images using superpixel multi-feature classification. IEEE Access 5, 17077–17088 (2017)Sinthanayothin, C., et al.: Automated detection of diabetic retinopathy on digital fundus images. Diabet. Med. 19(2), 105–112 (2002)Walter, T., Klein, J.C., et al.: A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Trans. Med. Imaging 21(10), 1236–1243 (2002)Ali, S., et al.: Statistical atlas based exudate segmentation. Comput. Med. Imaging Graph. 37(5–6), 358–368 (2013)Zhang, X., Thibault, G., DecenciĂšre, E., Marcotegui, B., et al.: Exudate detection in color retinal images for mass screening of diabetic retinopathy. Med. Image Anal. 18(7), 1026–1043 (2014)Li, H., Chutatape, O.: Automated feature extraction in color retinal images by a model based approach. IEEE Trans. Biomed. Eng. 51(2), 246–254 (2004)Welfer, D., Scharcanski, J., Marinho, D.R.: A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images. Comput. Med. Imaging Graph. 34(3), 228–235 (2010)Giancardo, L., et al.: Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med. Image Anal. 16(1), 216–226 (2012)Amel, F., Mohammed, M., Abdelhafid, B.: Improvement of the hard exudates detection method used for computer-aided diagnosis of diabetic retinopathy. Int. J. Image Graph. Signal Process. 4(4), 19 (2012)Akram, M.U., Khalid, S., Tariq, A., Khan, S.A., Azam, F.: Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput. Biol. Med. 45, 161–171 (2014)Akram, M.U., Tariq, A., Khan, S.A., Javed, M.Y.: Automated detection of exudates and macula for grading of diabetic macular edema. Comput. Methods Programs Biomed. 114(2), 141–152 (2014)Machairas, V.: Waterpixels and their application to image segmentation learning. Ph.D. thesis, UniversitĂ© de recherche Paris Sciences et Lettres (2016)Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and supervoxels in an energy optimization framework. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 211–224. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_16Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K.: TurboPixels: fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2290–2297 (2009)Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., SĂŒsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)Machairas, V., Faessel, M., CĂĄrdenas-Peña, D., Chabardes, T., Walter, T., DecenciĂšre, E.: Waterpixels. IEEE Trans. Image Process. 24(11), 3707–3716 (2015)Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)Guo, Z., Zhang, L., Zhang, D.: Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit. 43(3), 706–719 (2010)Morales, S., Naranjo, V., Angulo, J., Alcañiz, M.: Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans. Med. Imaging 32(4), 786–796 (2013)Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)DecenciĂšre, E., Cazuguel, G., Zhang, X., Thibault, G., Klein, J.C., Meyer, F., et al.: TeleOphta: machine learning and image processing methods for teleophthalmology. IRBM 34(2), 196–203 (2013)DErrico, J.: inpaint\_nans, matlab central file exchange (2004). http://kr.mathworks.com/matlabcentral/fileexchange/4551-inpaint-nans . Accessed 13 Aug 201

    Vapor-Liquid Equilibria for R-32 and R-410A Mixed With a Polyol Ester: Non-Ideality and Local Composition Modeling

    Get PDF
    Vapor-liquid equilibria (VLE) data were obtained over a wide range of mixture composition and saturation conditions for difluoromethane (R-32) mixed with a polyol ester oil (POE). These data were correlated using the following local composition models from the literature: Wilson, Heil, Wang and Chao, Tsuboka and Katayama, NRTL, and UNIQUAC. The results were used to evaluate the suitability of these models in predicting the saturation behavior of the R-32/POE mixture. The Heil model had the best performance, with a 2-a error of 4.81 % in predicted saturation pressure; UNIQUAC was the worst, with a 2-a pressure error of more than 12%. Using VLE results from the literature for pentafluoroethane (R-125) mixed with the same oil and model parameters for that mixture, and attempt was undertaken to make a priori predictions of the P-T-x behavior of a blend containing R-32, R-125 and the oil (R-410A/POE). Data were obtained for this blend, and the results indicate that the Heil model can make such predictions with a 2:' a pressure error of about 11 %.Air Conditioning and Refrigeration Project 5

    The Legality of Using Drones to Unilaterally Monitor Atrocity Crimes

    Get PDF

    Structure and Decay Correlations of Two-Neutron Systems Beyond the Dripline

    Full text link
    The two-neutron unbound systems of 16Be, 13Li, 10He, and 26O have been measured using the Modular Neutron Array (MoNA) and 4 Tm Sweeper magnet setup. The correlations of the 3-body decay for the 16Be and 13Li were extracted and demonstrated a strong correlated enhancement between the two neutrons. The measurement of the 10He ground state resonance from a 14Be(−2p2n) reaction provided insight into previous predictions that wavefunction of the entrance channel, projectile, can influence the observed decay energy spectrum for the unbound system. Lastly, the decay-in-target (DiT) technique was utilized to extract the lifetime of the 26O ground state. The measured lifetime of 4.5+1.1 −1.5 (stat.)±3(sys.) ps provides the first indication of two-neutron radioactivity
    • 

    corecore