5,503 research outputs found

    Robust large-scale EBMT with marker-based segmentation

    Get PDF
    Previous work on marker-based EBMT [Gough & Way, 2003, Way & Gough, 2004] suffered from problems such as data-sparseness and disparity between the training and test data. We have developed a large-scale robust EBMT system. In a comparison with the systems listed in [Somers, 2003], ours is the third largest EBMT system and certainly the largest English-French EBMT system. Previous work used the on-line MT system Logomedia to translate source language material as a means of populating the system’s database where bitexts were unavailable. We derive our sententially aligned strings from a Sun Translation Memory (TM) and limit the integration of Logomedia to the derivation of our word-level lexicon. We also use Logomedia to provide a baseline comparison for our system and observe that we outperform Logomedia and previous marker-based EBMT systems in a number of tests

    Modules with irrational slope over tubular algebras

    Full text link
    Let AA be a tubular algebra and let rr be a positive irrational. Let Dr{\mathcal D}_r be the definable subcategory of AA-modules of slope rr. Then the width of the lattice of pp formulas for Dr{\mathcal D}_r is \infty. It follows that if AA is countable then there is a superdecomposable pure-injective module of slope rr.Comment: minor corrections/improvements to argument

    Definable orthogonality classes in accessible categories are small

    Get PDF
    We lower substantially the strength of the assumptions needed for the validity of certain results in category theory and homotopy theory which were known to follow from Vopenka's principle. We prove that the necessary large-cardinal hypotheses depend on the complexity of the formulas defining the given classes, in the sense of the Levy hierarchy. For example, the statement that, for a class S of morphisms in a locally presentable category C of structures, the orthogonal class of objects is a small-orthogonality class (hence reflective) is provable in ZFC if S is \Sigma_1, while it follows from the existence of a proper class of supercompact cardinals if S is \Sigma_2, and from the existence of a proper class of what we call C(n)-extendible cardinals if S is \Sigma_{n+2} for n bigger than or equal to 1. These cardinals form a new hierarchy, and we show that Vopenka's principle is equivalent to the existence of C(n)-extendible cardinals for all n. As a consequence, we prove that the existence of cohomological localizations of simplicial sets, a long-standing open problem in algebraic topology, is implied by the existence of arbitrarily large supercompact cardinals. This result follows from the fact that cohomology equivalences are \Sigma_2. In contrast with this fact, homology equivalences are \Sigma_1, from which it follows (as is well known) that the existence of homological localizations is provable in ZFC.Comment: 38 pages; some results have been improved and former inaccuracies have been correcte

    Lambek vs. Lambek: Functorial Vector Space Semantics and String Diagrams for Lambek Calculus

    Full text link
    The Distributional Compositional Categorical (DisCoCat) model is a mathematical framework that provides compositional semantics for meanings of natural language sentences. It consists of a computational procedure for constructing meanings of sentences, given their grammatical structure in terms of compositional type-logic, and given the empirically derived meanings of their words. For the particular case that the meaning of words is modelled within a distributional vector space model, its experimental predictions, derived from real large scale data, have outperformed other empirically validated methods that could build vectors for a full sentence. This success can be attributed to a conceptually motivated mathematical underpinning, by integrating qualitative compositional type-logic and quantitative modelling of meaning within a category-theoretic mathematical framework. The type-logic used in the DisCoCat model is Lambek's pregroup grammar. Pregroup types form a posetal compact closed category, which can be passed, in a functorial manner, on to the compact closed structure of vector spaces, linear maps and tensor product. The diagrammatic versions of the equational reasoning in compact closed categories can be interpreted as the flow of word meanings within sentences. Pregroups simplify Lambek's previous type-logic, the Lambek calculus, which has been extensively used to formalise and reason about various linguistic phenomena. The apparent reliance of the DisCoCat on pregroups has been seen as a shortcoming. This paper addresses this concern, by pointing out that one may as well realise a functorial passage from the original type-logic of Lambek, a monoidal bi-closed category, to vector spaces, or to any other model of meaning organised within a monoidal bi-closed category. The corresponding string diagram calculus, due to Baez and Stay, now depicts the flow of word meanings.Comment: 29 pages, pending publication in Annals of Pure and Applied Logi

    Computational reverse mathematics and foundational analysis

    Get PDF
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the evaluation of major foundational approaches by a careful examination of two case studies: a partial realization of Hilbert's program due to Simpson [1988], and predicativism in the extended form due to Feferman and Sch\"{u}tte. Shore [2010, 2013] proposes that equivalences in reverse mathematics be proved in the same way as inequivalences, namely by considering only ω\omega-models of the systems in question. Shore refers to this approach as computational reverse mathematics. This paper shows that despite some attractive features, computational reverse mathematics is inappropriate for foundational analysis, for two major reasons. Firstly, the computable entailment relation employed in computational reverse mathematics does not preserve justification for the foundational programs above. Secondly, computable entailment is a Π11\Pi^1_1 complete relation, and hence employing it commits one to theoretical resources which outstrip those available within any foundational approach that is proof-theoretically weaker than Π11-CA0\Pi^1_1\text{-}\mathsf{CA}_0.Comment: Submitted. 41 page

    A recovery operator for nontransitive approaches

    Get PDF
    In some recent articles, Cobreros, Egré, Ripley, & van Rooij have defended the idea that abandoning transitivity may lead to a solution to the trouble caused by semantic paradoxes. For that purpose, they develop the Strict-Tolerant approach, which leads them to entertain a nontransitive theory of truth, where the structural rule of Cut is not generally valid. However, that Cut fails in general in the target theory of truth does not mean that there are not certain safe instances of Cut involving semantic notions. In this article we intend to meet the challenge of answering how to regain all the safe instances of Cut, in the language of the theory, making essential use of a unary recovery operator. To fulfill this goal, we will work within the so-called Goodship Project, which suggests that in order to have nontrivial naïve theories it is sufficient to formulate the corresponding self-referential sentences with suitable biconditionals. Nevertheless, a secondary aim of this article is to propose a novel way to carry this project out, showing that the biconditionals in question can be totally classical. In the context of this article, these biconditionals will be essentially used in expressing the self-referential sentences and, thus, as a collateral result of our work we will prove that none of the recoveries expected of the target theory can be nontrivially achieved if self-reference is expressed through identities

    Guarded Teams: The Horizontally Guarded Case

    Get PDF
    Team semantics admits reasoning about large sets of data, modelled by sets of assignments (called teams), with first-order syntax. This leads to high expressive power and complexity, particularly in the presence of atomic dependency properties for such data sets. It is therefore interesting to explore fragments and variants of logic with team semantics that permit model-theoretic tools and algorithmic methods to control this explosion in expressive power and complexity. We combine here the study of team semantics with the notion of guarded logics, which are well-understood in the case of classical Tarski semantics, and known to strike a good balance between expressive power and algorithmic manageability. In fact there are two strains of guardedness for teams. Horizontal guardedness requires the individual assignments of the team to be guarded in the usual sense of guarded logics. Vertical guardedness, on the other hand, posits an additional (or definable) hypergraph structure on relational structures in order to interpret a constraint on the component-wise variability of assignments within teams. In this paper we investigate the horizontally guarded case. We study horizontally guarded logics for teams and appropriate notions of guarded team bisimulation. In particular, we establish characterisation theorems that relate invariance under guarded team bisimulation with guarded team logics, but also with logics under classical Tarski semantics
    corecore