1,110 research outputs found

    An Evolutionary Algorithm to Generate Ellipsoid Detectors for Negative Selection

    Get PDF
    Negative selection is a process from the biological immune system that can be applied to two-class (self and nonself) classification problems. Negative selection uses only one class (self) for training, which results in detectors for the other class (nonself). This paradigm is especially useful for problems in which only one class is available for training, such as network intrusion detection. Previous work has investigated hyper-rectangles and hyper-spheres as geometric detectors. This work proposes ellipsoids as geometric detectors. First, the author establishes a mathematical model for ellipsoids. He develops an algorithm to generate ellipsoids by training on only one class of data. Ellipsoid mutation operators, an objective function, and a convergence technique are described for the evolutionary algorithm that generates ellipsoid detectors. Testing on several data sets validates this approach by showing that the algorithm generates good ellipsoid detectors. Against artificial data sets, the detectors generated by the algorithm match more than 90% of nonself data with no false alarms. Against a subset of data from the 1999 DARPA MIT intrusion detection data, the ellipsoids generated by the algorithm detected approximately 98% of nonself (intrusions) with an approximate 0% false alarm rate

    Artificial immune systems based committee machine for classification application

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.A new adaptive learning Artificial Immune System (AIS) based committee machine is developed in this thesis. The new proposed approach efficiently tackles the general problem of clustering high-dimensional data. In addition, it helps on deriving useful decision and results related to other application domains such classification and prediction. Artificial Immune System (AIS) is a branch of computational intelligence field inspired by the biological immune system, and has gained increasing interest among researchers in the development of immune-based models and techniques to solve diverse complex computational or engineering problems. This work presents some applications of AIS techniques to health problems, and a thorough survey of existing AIS models and algorithms. The main focus of this research is devoted to building an ensemble model integrating different AIS techniques (i.e. Artificial Immune Networks, Clonal Selection, and Negative Selection) for classification applications to achieve better classification results. A new AIS-based ensemble architecture with adaptive learning features is proposed by integrating different learning and adaptation techniques to overcome individual limitations and to achieve synergetic effects through the combination of these techniques. Various techniques related to the design and enhancements of the new adaptive learning architecture are studied, including a neuro-fuzzy based detector and an optimizer using particle swarm optimization method to achieve enhanced classification performance. An evaluation study was conducted to show the performance of the new proposed adaptive learning ensemble and to compare it to alternative combining techniques. Several experiments are presented using different medical datasets for the classification problem and findings and outcomes are discussed. The new adaptive learning architecture improves the accuracy of the ensemble. Moreover, there is an improvement over the existing aggregation techniques. The outcomes, assumptions and limitations of the proposed methods with its implications for further research in this area draw this research to its conclusion

    Biological systems on a small scale

    Get PDF

    Multivariate Analysis in Management, Engineering and the Sciences

    Get PDF
    Recently statistical knowledge has become an important requirement and occupies a prominent position in the exercise of various professions. In the real world, the processes have a large volume of data and are naturally multivariate and as such, require a proper treatment. For these conditions it is difficult or practically impossible to use methods of univariate statistics. The wide application of multivariate techniques and the need to spread them more fully in the academic and the business justify the creation of this book. The objective is to demonstrate interdisciplinary applications to identify patterns, trends, association sand dependencies, in the areas of Management, Engineering and Sciences. The book is addressed to both practicing professionals and researchers in the field
    • …
    corecore