17 research outputs found

    Arithmetic Operations in Multi-Valued Logic

    Full text link
    This paper presents arithmetic operations like addition, subtraction and multiplications in Modulo-4 arithmetic, and also addition, multiplication in Galois field, using multi-valued logic (MVL). Quaternary to binary and binary to quaternary converters are designed using down literal circuits. Negation in modular arithmetic is designed with only one gate. Logic design of each operation is achieved by reducing the terms using Karnaugh diagrams, keeping minimum number of gates and depth of net in to consideration. Quaternary multiplier circuit is proposed to achieve required optimization. Simulation result of each operation is shown separately using Hspice.Comment: 12 Pages, VLSICS Journal 201

    The 1992 4th NASA SERC Symposium on VLSI Design

    Get PDF
    Papers from the fourth annual NASA Symposium on VLSI Design, co-sponsored by the IEEE, are presented. Each year this symposium is organized by the NASA Space Engineering Research Center (SERC) at the University of Idaho and is held in conjunction with a quarterly meeting of the NASA Data System Technology Working Group (DSTWG). One task of the DSTWG is to develop new electronic technologies that will meet next generation electronic data system needs. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The NASA SERC is proud to offer, at its fourth symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories, the electronics industry, and universities. These speakers share insights into next generation advances that will serve as a basis for future VLSI design

    Pulse stream VLSI circuits and techniques for the implementation of neural networks

    Get PDF

    NASA Space Engineering Research Center Symposium on VLSI Design

    Get PDF
    The NASA Space Engineering Research Center (SERC) is proud to offer, at its second symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories and the electronics industry. These featured speakers share insights into next generation advances that will serve as a basis for future VLSI design. Questions of reliability in the space environment along with new directions in CAD and design are addressed by the featured speakers

    Scalable Energy-efficient Microarchitectures with Computational Error Tolerance

    Get PDF
    Dennard scaling of conventional semiconductor technology has reached its limit resulting in issues pertaining to leakage current and threshold voltage. Energy-savings found at the transistor level by simply lowering supply voltage are no longer available for these devices (e.g., MOSFETs) and has reached the Landauer-Shannon limit. Recent proposals of minivolt switch technologies aim to extend the technology scaling roadmap by maintaining a high on/off ratio of drain current with a much lower supply voltage. However, high intermittent error probabilities in millivolt switches constraints their Vdd reduction for traditional architectures. Thus, there is an urgent need for scalable and energy-efficient micro-architectures with computational error-tolerance. This thesis systematically leverages the error detection and correction properties of the Redundant Residue Number System (RRNS) by varying the number of non-redundant (n) and redundant (r) components (residues), and selects and discusses trade-offs about configuration points from a two-dimensional (n, r)-RRNS design plane that meet certain capabilities of error detection and/or correction. Being able to efficiently handle resilience in this (n, r)-RRNS plane significantly improves reliability, allowing further Vdd reduction and energy savings. First, the necessary implementation details of RRNS cores are discussed. Second, scalable RRNS micro-architectures that simultaneously support both error-correction and checkpointing with restart capabilities for uncorrectable errors are proposed. Third, novel RRNS-based adaptive checkpointing&restart mechanisms are designed that automatically guarantee reliability while minimizing the energy-delay product (EDP). Finally, the RRNS design space is explored to find the optimal (n, r) configuration points. For similar reliability when compared to a conventional binary core (running at high Vdd) without computational error tolerance, the proposed RRNS scalable micro-architecture reduces EDP by 53% on average for memory-intensive workloads and by 67% on average for non-memory-intensive workloads. This thesis's second topic is to alleviate fault rate and power consumption issues of exascale computing. Faults in High-Performance Computing (HPC) have become an urgent challenge with estimated Mean Time Between Failures (MTBF) of exascale system projected as only several minutes with contemporary methodologies. Unfortunately, existing error-tolerance technologies in the context of HPC systems have serious deficiencies such as insufficient error-tolerance coverage, high power consumption, and difficult integration with existing workloads. Considering Department of Energy (DOE) guidelines that limit exascale power consumption to 20 MW, this thesis highlights the issue of energy usage and proposes a thread-level fault tolerance mechanism compatible with current state-of-the art exascale programming models while simultaneously meeting the requirements of full system error protection. Additionally, an efficient micro-architecture and corresponding mechanisms that can support thread level RRNS are discussed. Experimental results show that this strategy reduces energy consumption by 62.25% and the Energy-Delay-Product by 58.67% on average when compared with state-of-the-art black box resilience techniques.Ph.D

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    Smart Sensors for Healthcare and Medical Applications

    Get PDF
    This book focuses on new sensing technologies, measurement techniques, and their applications in medicine and healthcare. Specifically, the book briefly describes the potential of smart sensors in the aforementioned applications, collecting 24 articles selected and published in the Special Issue “Smart Sensors for Healthcare and Medical Applications”. We proposed this topic, being aware of the pivotal role that smart sensors can play in the improvement of healthcare services in both acute and chronic conditions as well as in prevention for a healthy life and active aging. The articles selected in this book cover a variety of topics related to the design, validation, and application of smart sensors to healthcare

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Analogue filter networks: developments in theory, design and analyses

    Get PDF
    Not availabl

    Modern Approaches To Quality Control

    Get PDF
    Rapid advance have been made in the last decade in the quality control procedures and techniques, most of the existing books try to cover specific techniques with all of their details. The aim of this book is to demonstrate quality control processes in a variety of areas, ranging from pharmaceutical and medical fields to construction engineering and data quality. A wide range of techniques and procedures have been covered
    corecore