525 research outputs found

    Synthesis, structure and power of systolic computations

    Get PDF
    AbstractA variety of problems related to systolic architectures, systems, models and computations are discussed. The emphases are on theoretical problems of a broader interest. Main motivations and interesting/important applications are also presented. The first part is devoted to problems related to synthesis, transformations and simulations of systolic systems and architectures. In the second part, the power and structure of tree and linear array computations are studied in detail. The goal is to survey main research directions, problems, methods and techniques in not too formal a way

    Descriptional complexity of cellular automata and decidability questions

    Get PDF
    We study the descriptional complexity of cellular automata (CA), a parallel model of computation. We show that between one of the simplest cellular models, the realtime-OCA. and "classical" models like deterministic finite automata (DFA) or pushdown automata (PDA), there will be savings concerning the size of description not bounded by any recursive function, a so-called nonrecursive trade-off. Furthermore, nonrecursive trade-offs are shown between some restricted classes of cellular automata. The set of valid computations of a Turing machine can be recognized by a realtime-OCA. This implies that many decidability questions are not even semi decidable for cellular automata. There is no pumping lemma and no minimization algorithm for cellular automata

    Computer Architectures Using Nanotechnology

    Get PDF

    Hyper-systolic parallel computing

    Get PDF
    A new class of parallel algorithms is introduced that can achieve a complexity of O(n^3/2) with respect to the interprocessor communication, in the exact computation of systems with pairwise mutual interactions of all elements. Hitherto, conventional methods exhibit a communicational complexity of O(n^2). The amount of computation operations is not altered for the new algorithm which can be formulated as a kind of h-range problem, known from the mathematical field of Additive Number Theory. We will demonstrate the reduction in communicational expense by comparing the standard-systolic algorithm and the new algorithm on the connection machine CM5 and the CRAY T3D. The parallel method can be useful in various scientific and engineering fields like exact n-body dynamics with long range forces, polymer chains, protein folding or signal processing

    Interleaving in Systolic-Arrays: a Throughput Breakthrough

    Get PDF
    In past years the most common way to improve computers performance was to increase the clock frequency. In recent years this approach suffered the limits of technology scaling, therefore computers architectures are shifting toward the direction of parallel computing to further improve circuits performance. Not only GPU based architectures are spreading in consideration, but also Systolic Arrays are particularly suited for certain classes of algorithms. An important point in favor of Systolic Arrays is that, due to the regularity of their circuit layout, they are appealing when applied to many emerging and very promising technologies, like Quantum-dot Cellular Automata and nanoarrays based on Silicon NanoWire or on Carbon nanotube Field Effect Transistors. In this work we present a systematic method to improve Systolic Arrays performance exploiting Pipelining and Input Data Interleaving. We tackle the problem from a theoretical point of view first, and then we apply it to both CMOS technology and emerging technologies. On CMOS we demonstrate that it is possible to vastly improve the overall throughput of the circuit. By applying this technique to emerging technologies we show that it is possible to overcome some of their limitations greatly improving the throughput, making a considerable step forward toward the post-CMOS era
    • …
    corecore