5,373 research outputs found

    A highly parameterized and efficient FPGA-based skeleton for pairwise biological sequence alignment

    Get PDF

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also

    Protein alignment HW/SW optimizations

    Get PDF
    Biosequence alignment recently received an amazing support from both commodity and dedicated hardware platforms. The limitless requirements of this application motivate the search for improved implementations to boost processing time and capabilities. We propose an unprecedented hardware improvement to the classic Smith-Waterman (S-W) algorithm based on a twofold approach: i) an on-the-fly gap-open/gap-extension selection that reduces the hardware implementation complexity; ii) a pre-selection filter that uses reduced amino-acid alphabets to screen out not-significant sequences and to shorten the S-Witerations on huge reference databases.We demonstrated the improvements w.r.t. a classic approach both from the point of view of algorithm efficiency and of HW performance (FPGA and ASIC post-synthesis analysis)

    Fully automated segmentation and tracking of the intima media thickness in ultrasound video sequences of the common carotid artery

    Get PDF
    Abstract—The robust identification and measurement of the intima media thickness (IMT) has a high clinical relevance because it represents one of the most precise predictors used in the assessment of potential future cardiovascular events. To facilitate the analysis of arterial wall thickening in serial clinical investigations, in this paper we have developed a novel fully automatic algorithm for the segmentation, measurement, and tracking of the intima media complex (IMC) in B-mode ultrasound video sequences. The proposed algorithm entails a two-stage image analysis process that initially addresses the segmentation of the IMC in the first frame of the ultrasound video sequence using a model-based approach; in the second step, a novel customized tracking procedure is applied to robustly detect the IMC in the subsequent frames. For the video tracking procedure, we introduce a spatially coherent algorithm called adaptive normalized correlation that prevents the tracking process from converging to wrong arterial interfaces. This represents the main contribution of this paper and was developed to deal with inconsistencies in the appearance of the IMC over the cardiac cycle. The quantitative evaluation has been carried out on 40 ultrasound video sequences of the common carotid artery (CCA) by comparing the results returned by the developed algorithm with respect to ground truth data that has been manually annotated by clinical experts. The measured IMTmean ± standard deviation recorded by the proposed algorithm is 0.60 mm ± 0.10, with a mean coefficient of variation (CV) of 2.05%, whereas the corresponding result obtained for the manually annotated ground truth data is 0.60 mm ± 0.11 with a mean CV equal to 5.60%. The numerical results reported in this paper indicate that the proposed algorithm is able to correctly segment and track the IMC in ultrasound CCA video sequences, and we were encouraged by the stability of our technique when applied to data captured under different imaging conditions. Future clinical studies will focus on the evaluation of patients that are affected by advanced cardiovascular conditions such as focal thickening and arterial plaques

    Design of testbed and emulation tools

    Get PDF
    The research summarized was concerned with the design of testbed and emulation tools suitable to assist in projecting, with reasonable accuracy, the expected performance of highly concurrent computing systems on large, complete applications. Such testbed and emulation tools are intended for the eventual use of those exploring new concurrent system architectures and organizations, either as users or as designers of such systems. While a range of alternatives was considered, a software based set of hierarchical tools was chosen to provide maximum flexibility, to ease in moving to new computers as technology improves and to take advantage of the inherent reliability and availability of commercially available computing systems

    Reliable and Energy Efficient MLC STT-RAM Buffer for CNN Accelerators

    Get PDF
    We propose a lightweight scheme where the formation of a data block is changed in such a way that it can tolerate soft errors significantly better than the baseline. The key insight behind our work is that CNN weights are normalized between -1 and 1 after each convolutional layer, and this leaves one bit unused in half-precision floating-point representation. By taking advantage of the unused bit, we create a backup for the most significant bit to protect it against the soft errors. Also, considering the fact that in MLC STT-RAMs the cost of memory operations (read and write), and reliability of a cell are content-dependent (some patterns take larger current and longer time, while they are more susceptible to soft error), we rearrange the data block to minimize the number of costly bit patterns. Combining these two techniques provides the same level of accuracy compared to an error-free baseline while improving the read and write energy by 9% and 6%, respectively

    Development of a PC interfaced blood pressure meter (E-BPMS)

    Get PDF
    Blood pressure is one of the fundamental vital signs, and its measurement is of great importance to medical professionals and the general public alike. Nowadays, there are several types of blood pressure meter available manufactured from various companies. In order to meet the demand on telemedicine and technology advancement, a new form of blood pressure meter is desirable. This prototype of blood pressure meter is interfaced with a personal computer (PC) which able to simulate the measurement process in real time. The proposed system was named e-BPMS (Electronic Blood Pressure Measurement System) suggests the usage of both hardware and software in determining blood pressure reading. Hardware elements operate on oscillometric principle which gives the results in terms of systolic, diastolic and MAP (Mean Arterial Pressure). Furthermore, these results will be presented and simulated on the software. The e-BPMS interface was developed by using Visual Basic 6.0 language which highlights the user friendly attributes. Moreover, the simulated waveform will evaluate the blood pressure and gives the blood pressure value. This application shows significant improvement on the overall performance and gives reliable results. The framework used to design e-BPMS is easy to understand and it can be extended further to endorse new application area
    • 

    corecore