40,315 research outputs found

    Voltage-Mode Multifunction Biquadratic Filters Using New Ultra-Low-Power Differential Difference Current Conveyors

    Get PDF
    This paper presents two low-power voltage-mode multifunction biquadratic filters using differential difference current conveyors. Each proposed circuit employs three differential difference current conveyors, two grounded capacitors and two grounded resistors. The low-voltage ultra-low-power differential difference current conveyor is used to provide low-power consumption of the proposed filters. By appropriately connecting the input and output terminals, the proposed filters can provide low-pass, band-pass, high-pass, band-stop and all-pass voltage responses at high-input terminals, which is a desirable feature for voltage-mode operations. The natural frequency and the quality factor can be orthogonally set by adjusting the circuit components. For realizing all the filter responses, no inverting-type input signal requirements as well as no component-matching conditional requirements are imposed. The incremental parameter sensitivities are also low. The characteristics of the proposed circuits are simulated by using PSPICE simulators to confirm the presented theory

    A FPGA system for QRS complex detection based on Integer Wavelet Transform

    Get PDF
    Due to complexity of their mathematical computation, many QRS detectors are implemented in software and cannot operate in real time. The paper presents a real-time hardware based solution for this task. To filter ECG signal and to extract QRS complex it employs the Integer Wavelet Transform. The system includes several components and is incorporated in a single FPGA chip what makes it suitable for direct embedding in medical instruments or wearable health care devices. It has sufficient accuracy (about 95%), showing remarkable noise immunity and low cost. Additionally, each system component is composed of several identical blocks/cells what makes the design highly generic. The capacity of today existing FPGAs allows even dozens of detectors to be placed in a single chip. After the theoretical introduction of wavelets and the review of their application in QRS detection, it will be shown how some basic wavelets can be optimized for easy hardware implementation. For this purpose the migration to the integer arithmetic and additional simplifications in calculations has to be done. Further, the system architecture will be presented with the demonstrations in both, software simulation and real testing. At the end, the working performances and preliminary results will be outlined and discussed. The same principle can be applied with other signals where the hardware implementation of wavelet transform can be of benefit

    New directions in EEG measurement: an investigation into the fidelity of electrical potential sensor signals

    Get PDF
    Low frequency noise performance is the key indicator in determining the signal to noise ratio of a capacitively coupled sensor when used to acquire electroencephalogram signals. For this reason, a prototype Electric Potential Sensor device based on an auto-zero operational amplifier has been developed and evaluated. The absence of 1/f noise in these devices makes them ideal for use with signal frequencies ~10 Hz or less. The active electrodes are designed to be physically and electrically robust and chemically and biochemically inert. They are electrically insulated (anodized) and have diameters of 12 mm or 18 mm. In both cases, the sensors are housed in inert stainless steel machined housings with the electronics fabricated in surface mount components on a printed circuit board compatible with epoxy potting compounds. Potted sensors are designed to be immersed in alcohol for sterilization purposes. A comparative study was conducted with a commercial wet gel electrode system. These studies comprised measurements of both free running electroencephalogram and Event Related Potentials. Quality of the recorded electroencephalogram was assessed using three methods of inspection of raw signal, comparing signal to noise ratios, and Event Related Potentials noise analysis. A strictly comparable signal to noise ratio was observed and the overall conclusion from these comparative studies is that the noise performance of the new sensor is appropriate

    A direct-sequence spread-spectrum communication system for integrated sensor microsystems

    Get PDF
    Some of the most important challenges in health-care technologies have been identified to be development of noninvasive systems and miniaturization. In developing the core technologies, progress is required in pushing the limits of miniaturization, minimizing the costs and power consumption of microsystems components, developing mobile/wireless communication infrastructures and computing technologies that are reliable. The implementation of such miniaturized systems has become feasible by the advent of system-on-chip technology, which enables us to integrate most of the components of a system on to a single chip. One of the most important tasks in such a system is to convey information reliably on a multiple-access-based environment. When considering the design of telecommunication system for such a network, the receiver is the key performance critical block. The paper describes the application environment, the choice of the communication protocol, the implementation of the transmitter and receiver circuitry, and research work carried out on studying the impact of input data characteristics and internal data path complexity on area and power performance of the receiver. We provide results using a test data recorded from a pH sensor. The results demonstrate satisfying functionality, area, and power constraints even when a degree of programmability is incorporated in the system
    corecore