155,475 research outputs found

    An Introduction to 3D User Interface Design

    Get PDF
    3D user interface design is a critical component of any virtual environment (VE) application. In this paper, we present a broad overview of three-dimensional (3D) interaction and user interfaces. We discuss the effect of common VE hardware devices on user interaction, as well as interaction techniques for generic 3D tasks and the use of traditional two-dimensional interaction styles in 3D environments. We divide most user interaction tasks into three categories: navigation, selection/manipulation, and system control. Throughout the paper, our focus is on presenting not only the available techniques, but also practical guidelines for 3D interaction design and widely held myths. Finally, we briefly discuss two approaches to 3D interaction design, and some example applications with complex 3D interaction requirements. We also present an annotated online bibliography as a reference companion to this article

    Symmetric and asymmetric action integration during cooperative object manipulation in virtual environments

    Get PDF
    Cooperation between multiple users in a virtual environment (VE) can take place at one of three levels. These are defined as where users can perceive each other (Level 1), individually change the scene (Level 2), or simultaneously act on and manipulate the same object (Level 3). Despite representing the highest level of cooperation, multi-user object manipulation has rarely been studied. This paper describes a behavioral experiment in which the piano movers' problem (maneuvering a large object through a restricted space) was used to investigate object manipulation by pairs of participants in a VE. Participants' interactions with the object were integrated together either symmetrically or asymmetrically. The former only allowed the common component of participants' actions to take place, but the latter used the mean. Symmetric action integration was superior for sections of the task when both participants had to perform similar actions, but if participants had to move in different ways (e.g., one maneuvering themselves through a narrow opening while the other traveled down a wide corridor) then asymmetric integration was superior. With both forms of integration, the extent to which participants coordinated their actions was poor and this led to a substantial cooperation overhead (the reduction in performance caused by having to cooperate with another person)

    Task-adaptable, Pervasive Perception for Robots Performing Everyday Manipulation

    Get PDF
    Intelligent robotic agents that help us in our day-to-day chores have been an aspiration of robotics researchers for decades. More than fifty years since the creation of the first intelligent mobile robotic agent, robots are still struggling to perform seemingly simple tasks, such as setting or cleaning a table. One of the reasons for this is that the unstructured environments these robots are expected to work in impose demanding requirements on a robota s perception system. Depending on the manipulation task the robot is required to execute, different parts of the environment need to be examined, the objects in it found and functional parts of these identified. This is a challenging task, since the visual appearance of the objects and the variety of scenes they are found in are large. This thesis proposes to treat robotic visual perception for everyday manipulation tasks as an open question-asnswering problem. To this end RoboSherlock, a framework for creating task-adaptable, pervasive perception systems is presented. Using the framework, robot perception is addressed from a systema s perspective and contributions to the state-of-the-art are proposed that introduce several enhancements which scale robot perception toward the needs of human-level manipulation. The contributions of the thesis center around task-adaptability and pervasiveness of perception systems. A perception task-language and a language interpreter that generates task-relevant perception plans is proposed. The task-language and task-interpreter leverage the power of knowledge representation and knowledge-based reasoning in order to enhance the question-answering capabilities of the system. Pervasiveness, a seamless integration of past, present and future percepts, is achieved through three main contributions: a novel way for recording, replaying and inspecting perceptual episodic memories, a new perception component that enables pervasive operation and maintains an object belief state and a novel prospection component that enables robots to relive their past experiences and anticipate possible future scenarios. The contributions are validated through several real world robotic experiments that demonstrate how the proposed system enhances robot perception

    A Workstation for microassembly

    Get PDF
    In this paper, an open-architecture, reconfigurable microassembly workstation for efficient and reliable assembly of micromachined parts is presented. The workstation is designed to be used as a research tool for investigation of the problems in microassembly. The development of such a workstation includes the design of: (i) a manipulation system consisting of motion stages providing necessary travel range and precision for the realization of assembly tasks, (ii) a vision system to visualize the microworld and the determination of the position and orientation of micro components to be assembled, (iii) a robust control system and necessary mounts for the end effectors in such a way that according to the task to be realized, the manipulation tools can be easily changed and the system will be ready for the predefined task. In addition tele-operated and semi-automated assembly concepts are implemented. The design is verified by implementing the range of the tasks in micro-parts manipulation. The versatility of the workstation is demonstrated and high accuracy of positioning is sho

    Prop-Based Haptic Interaction with Co-location and Immersion: an Automotive Application

    Get PDF
    Most research on 3D user interfaces aims at providing only a single sensory modality. One challenge is to integrate several sensory modalities into a seamless system while preserving each modality's immersion and performance factors. This paper concerns manipulation tasks and proposes a visuo-haptic system integrating immersive visualization, tactile force and tactile feedback with co-location. An industrial application is presented
    corecore