2,982,046 research outputs found

    Systems Engineering Leading Indicators Guide, Version 1.0

    Get PDF
    The Systems Engineering Leading Indicators guide set reflects the initial subset of possible indicators that were considered to be the highest priority for evaluating effectiveness before the fact. A leading indicator is a measure for evaluating the effectiveness of a how a specific activity is applied on a program in a manner that provides information about impacts that are likely to affect the system performance objectives. A leading indicator may be an individual measure, or collection of measures, that are predictive of future system performance before the performance is realized. Leading indicators aid leadership in delivering value to customers and end users, while assisting in taking interventions and actions to avoid rework and wasted effort. The Systems Engineering Leading Indicators Guide was initiated as a result of the June 2004 Air Force/LAI Workshop on Systems Engineering for Robustness, this guide supports systems engineering revitalization. Over several years, a group of industry, government, and academic stakeholders worked to define and validate a set of thirteen indicators for evaluating the effectiveness of systems engineering on a program. Released as version 1.0 in June 2007 the leading indicators provide predictive information to make informed decisions and where necessary, take preventative or corrective action during the program in a proactive manner. While the leading indicators appear similar to existing measures and often use the same base information, the difference lies in how the information is gathered, evaluated, interpreted and used to provide a forward looking perspective

    Systems Engineering Leading Indicators Guide, Version 2.0

    Get PDF
    The Systems Engineering Leading Indicators Guide editorial team is pleased to announce the release of Version 2.0. Version 2.0 supersedes Version 1.0, which was released in July 2007 and was the result of a project initiated by the Lean Advancement Initiative (LAI) at MIT in cooperation with: the International Council on Systems Engineering (INCOSE), Practical Software and Systems Measurement (PSM), and the Systems Engineering Advancement Research Initiative (SEAri) at MIT. A leading indicator is a measure for evaluating the effectiveness of how a specific project activity is likely to affect system performance objectives. A leading indicator may be an individual measure or a collection of measures and associated analysis that is predictive of future systems engineering performance. Systems engineering performance itself could be an indicator of future project execution and system performance. Leading indicators aid leadership in delivering value to customers and end users and help identify interventions and actions to avoid rework and wasted effort. Conventional measures provide status and historical information. Leading indicators use an approach that draws on trend information to allow for predictive analysis. By analyzing trends, predictions can be forecast on the outcomes of certain activities. Trends are analyzed for insight into both the entity being measured and potential impacts to other entities. This provides leaders with the data they need to make informed decisions and where necessary, take preventative or corrective action during the program in a proactive manner. Version 2.0 guide adds five new leading indicators to the previous 13 for a new total of 18 indicators. The guide addresses feedback from users of the previous version of the guide, as well as lessons learned from implementation and industry workshops. The document format has been improved for usability, and several new appendices provide application information and techniques for determining correlations of indicators. Tailoring of the guide for effective use is encouraged. Additional collaborating organizations involved in Version 2.0 include the Naval Air Systems Command (NAVAIR), US Department of Defense Systems Engineering Research Center (SERC), and National Defense Industrial Association (NDIA) Systems Engineering Division (SED). Many leading measurement and systems engineering experts from government, industry, and academia volunteered their time to work on this initiative

    Hubble Space Telescope Systems Engineering Case Study

    Get PDF
    The Hubble Space Telescope (HST) is an orbiting astronomical observatory operating in the spectrum from the near-infrared into the ultraviolet. Launched in 1990 and scheduled to operate through 2010, HST carries and has carried a wide variety of instruments producing imaging, spectrographic, astrometric, and photometric data through both pointed and parallel observing programs. Over 100,000 observations of more than 20,000 targets have been produced for retrieval. A macroscopic, cumulative representation of these observations is shown in the figure below to provide a sense of the enormous volume of astronomical data collected by the HST about our universe, our beginnings, and, consequently, about our future. The telescope is already well known as a marvel of science. This case study hopes to represent the facet of the HST that is a marvel of systems engineering, which, in fact, generated the scientific research and observation capabilities now appreciated worldwide

    F-111 Systems Engineering Case Study

    Get PDF
    The systems engineering lessons from the F-111 program will facilitate learning by emphasizing practical applications and resulting outcomes to the current processes and tools used on today s programs. The student will understand the long-term consequences of systems engineering as implemented on the F-111 and its effect on cost, schedule, and operational effectiveness. The reader can then postulate outcomes of alternate decisions at the program/system level

    C-5A Galaxy Systems Engineering Case Study

    Get PDF
    The C-5 Systems Engineering Case Study captures the untold story of the application of systems engineering during the concept exploration, development, and production of the USAF C-5A and C-5B aircraft. The case study examines and dissects the systems engineering process as applied by the Air Force C-5 System Program Office and the prime contractor, Lockheed, Georgia, from the program s genesis in 1957 to the last delivery of the C-5A and the beginning of the C-5B program in 1973. Numerous interviews were conducted with the principals who managed and directed the program and a story of the systems engineering process was developed. The case study traces the program s systems engineering process in translating a vision into 125 cargo transport aircraft that have served our nation proudly for the last 35 years

    Effective Systems Engineering Training

    Get PDF
    The need for systems engineering training is steadily increasing, as both the defense and commercial markets take on more complex "systems of systems" work. A variety of universities and commercial training vendors have assembled courses of various lengths, format, and content to meet this need. This presentation looks at the requirements for systems engineering training, and discusses techniques for increasing its effectiveness. Several format and content options for meeting these requirements are compared and contrasted, and an experience-based curriculum is shown
    • …
    corecore