216,173 research outputs found

    Microservices and Machine Learning Algorithms for Adaptive Green Buildings

    Get PDF
    In recent years, the use of services for Open Systems development has consolidated and strengthened. Advances in the Service Science and Engineering (SSE) community, promoted by the reinforcement of Web Services and Semantic Web technologies and the presence of new Cloud computing techniques, such as the proliferation of microservices solutions, have allowed software architects to experiment and develop new ways of building open and adaptable computer systems at runtime. Home automation, intelligent buildings, robotics, graphical user interfaces are some of the social atmosphere environments suitable in which to apply certain innovative trends. This paper presents a schema for the adaptation of Dynamic Computer Systems (DCS) using interdisciplinary techniques on model-driven engineering, service engineering and soft computing. The proposal manages an orchestrated microservices schema for adapting component-based software architectural systems at runtime. This schema has been developed as a three-layer adaptive transformation process that is supported on a rule-based decision-making service implemented by means of Machine Learning (ML) algorithms. The experimental development was implemented in the Solar Energy Research Center (CIESOL) applying the proposed microservices schema for adapting home architectural atmosphere systems on Green Buildings

    GOES-R Algorithms: A Common Science and Engineering Design and Development Approach for Delivering Next Generation Environmental Data Products

    Get PDF
    GOES-R, the next generation of the National Oceanic and Atmospheric Administration’s (NOAA) Geostationary Operational Environmental Satellite (GOES) System, represents a new technological era in operational geostationary environmental satellite systems. GOES-R will provide advanced products that describe the state of the atmosphere, land, oceans, and solar/ space environments over the western hemisphere. The Harris GOES-R Ground Segment team will provide the software, based on government-supplied algorithms, and engineering infrastructures designed to produce and distribute these next-generation data products. The Harris GOES-R Team has adopted an integrated applied science and engineering approach that combines rigorous system engineering methods, with modern software design elements to facilitate the transition of algorithms for Level 1 and 2+ products to operational software. The Harris Team GOES-R GS algorithm framework, which includes a common data model interface, provides general design principles and standardized methods for developing general algorithm services, interfacing to external data, generating intermediate and L1b and L2 products and implementing common algorithm features such as metadata generation and error handling. This work presents the suite of GOES-R products, their properties and the process by which the related requirements are maintained during the complete design/development life-cycle. It also describes the algorithm architecture/engineering approach that will be used to deploy these algorithms, and provides a preliminary implementation road map for the development of the GOES-R GS software infrastructure, and a view into the integration of the framework and data model into the final design

    Global Reference Atmospheric Models, Including Thermospheres, for Mars, Venus and Earth

    Get PDF
    This document is the viewgraph slides of the presentation. Marshall Space Flight Center's Natural Environments Branch has developed Global Reference Atmospheric Models (GRAMs) for Mars, Venus, Earth, and other solar system destinations. Mars-GRAM has been widely used for engineering applications including systems design, performance analysis, and operations planning for aerobraking, entry descent and landing, and aerocapture. Preliminary results are presented, comparing Mars-GRAM with measurements from Mars Reconnaissance Orbiter (MRO) during its aerobraking in Mars thermosphere. Venus-GRAM is based on the Committee on Space Research (COSPAR) Venus International Reference Atmosphere (VIRA), and is suitable for similar engineering applications in the thermosphere or other altitude regions of the atmosphere of Venus. Until recently, the thermosphere in Earth-GRAM has been represented by the Marshall Engineering Thermosphere (MET) model. Earth-GRAM has recently been revised. In addition to including an updated version of MET, it now includes an option to use the Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended Model (NRLMSISE-00) as an alternate thermospheric model. Some characteristics and results from Venus-GRAM and Earth-GRAM thermospheres are also presented

    Space cabin atmospheres

    Get PDF
    Space cabin atmospheres - physical and physiological variable

    Technology assessment of advanced automation for space missions

    Get PDF
    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology

    Mariner IV Mission to Mars. Part I

    Get PDF
    This technical report is a series of individual papers documenting the Mariner-Mars project from its beginning in 1962 following the successful Mariner-Venus mission. Part I is pre-encounter data. It includes papers on the design, development, and testing of Mariner IV, as well as papers detailing methods of maintaining communication with and obtaining data from the spacecraft during flight, and expected results during encounter with Mars. Part 11, post-encounter data, to be published later, will consist of documentation of the events taking place during Mariner IV's encounter with Mars and thereafter. The Mariner-Mars mission, the culmination of an era of spacecraft development, has contributed much new technology to be used in future projects

    Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, and Human Health and Safety

    Get PDF
    Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport codes are used to evaluate possible human health effects of cosmic ray exposure, however, the health effects are based on worst-case analysis and extrapolation of a very limited human exposure data base combined with some limited experimental animal data. Finally, the limitations on human space operations beyond low-Earth orbit imposed by long term exposure to galactic cosmic rays are discussed

    The crop growth research chamber: A ground-based facility for CELSS research

    Get PDF
    A ground based facility for the study of plant growth and development under stringently controlled environments is being developed by the Closed Ecological Life Support System (CELSS) program at the Ames Research Center. Several Crop Growth Research Chambers (CGRC) and laboratory support equipment provide the core of this facility. The CGRC is a closed (sealed) system with a separate recirculating atmosphere and nutrient delivery systems. The atmospheric environment, hydroponic environment, systems controls, and data acquisition are discussed
    • …
    corecore