629,308 research outputs found

    Multilayer Networks in a Nutshell

    Get PDF
    Complex systems are characterized by many interacting units that give rise to emergent behavior. A particularly advantageous way to study these systems is through the analysis of the networks that encode the interactions among the system's constituents. During the last two decades, network science has provided many insights in natural, social, biological and technological systems. However, real systems are more often than not interconnected, with many interdependencies that are not properly captured by single layer networks. To account for this source of complexity, a more general framework, in which different networks evolve or interact with each other, is needed. These are known as multilayer networks. Here we provide an overview of the basic methodology used to describe multilayer systems as well as of some representative dynamical processes that take place on top of them. We round off the review with a summary of several applications in diverse fields of science.Comment: 16 pages and 3 figures. Submitted for publicatio

    Spreading processes in Multilayer Networks

    Get PDF
    Several systems can be modeled as sets of interconnected networks or networks with multiple types of connections, here generally called multilayer networks. Spreading processes such as information propagation among users of an online social networks, or the diffusion of pathogens among individuals through their contact network, are fundamental phenomena occurring in these networks. However, while information diffusion in single networks has received considerable attention from various disciplines for over a decade, spreading processes in multilayer networks is still a young research area presenting many challenging research issues. In this paper we review the main models, results and applications of multilayer spreading processes and discuss some promising research directions.Comment: 21 pages, 3 figures, 4 table

    Synchronization in complex networks

    Get PDF
    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.Comment: Final version published in Physics Reports. More information available at http://synchronets.googlepages.com
    • …
    corecore