704 research outputs found

    DebtRank: A microscopic foundation for shock propagation

    Get PDF
    The DebtRank algorithm has been increasingly investigated as a method to estimate the impact of shocks in financial networks, as it overcomes the limitations of the traditional default-cascade approaches. Here we formulate a dynamical "microscopic" theory of instability for financial networks by iterating balance sheet identities of individual banks and by assuming a simple rule for the transfer of shocks from borrowers to lenders. By doing so, we generalise the DebtRank formulation, both providing an interpretation of the effective dynamics in terms of basic accounting principles and preventing the underestimation of losses on certain network topologies. Depending on the structure of the interbank leverage matrix the dynamics is either stable, in which case the asymptotic state can be computed analytically, or unstable, meaning that at least one bank will default. We apply this framework to a dataset of the top listed European banks in the period 2008 - 2013. We find that network effects can generate an amplification of exogenous shocks of a factor ranging between three (in normal periods) and six (during the crisis) when we stress the system with a 0.5% shock on external (i.e. non-interbank) assets for all banks.Comment: 10 pages, 2 figure

    Statistically validated network of portfolio overlaps and systemic risk

    Get PDF
    Common asset holding by financial institutions, namely portfolio overlap, is nowadays regarded as an important channel for financial contagion with the potential to trigger fire sales and thus severe losses at the systemic level. In this paper we propose a method to assess the statistical significance of the overlap between pairs of heterogeneously diversified portfolios, which then allows us to build a validated network of financial institutions where links indicate potential contagion channels due to realized portfolio overlaps. The method is implemented on a historical database of institutional holdings ranging from 1999 to the end of 2013, but can be in general applied to any bipartite network where the presence of similar sets of neighbors is of interest. We find that the proportion of validated network links (i.e., of statistically significant overlaps) increased steadily before the 2007-2008 global financial crisis and reached a maximum when the crisis occurred. We argue that the nature of this measure implies that systemic risk from fire sales liquidation was maximal at that time. After a sharp drop in 2008, systemic risk resumed its growth in 2009, with a notable acceleration in 2013, reaching levels not seen since 2007. We finally show that market trends tend to be amplified in the portfolios identified by the algorithm, such that it is possible to have an informative signal about financial institutions that are about to suffer (enjoy) the most significant losses (gains)

    Quantification of systemic risk from overlapping portfolios in the financial system

    Get PDF
    Financial markets create endogenous systemic risk, the risk that a substantial fraction of the system ceases to function and collapses. Systemic risk can propagate through different mechanisms and channels of contagion. One important form of financial contagion arises from indirect interconnections between financial institutions mediated by financial markets. This indirect interconnection occurs when financial institutions invest in common assets and is referred to as overlapping portfolios. In this work we quantify systemic risk from indirect interconnections between financial institutions. Complete information of security holdings of major Mexican financial intermediaries and the ability to uniquely identify securities in their portfolios, allows us to represent the Mexican financial system as a bipartite network of securities and financial institutions. This makes it possible to quantify systemic risk arising from overlapping portfolios. We show that focusing only on direct interbank exposures underestimates total systemic risk levels by up to 50% under the assumptions of the model. By representing the financial system as a multi-layer network of direct interbank exposures (default contagion) and indirect external exposures (overlapping portfolios) we estimate the mutual influence of different channels of contagion. The method presented here is the first quantification of systemic risk on national scales that includes overlapping portfolios

    Assessing systemic risk due to fire sales spillover through maximum entropy network reconstruction

    Full text link
    Assessing systemic risk in financial markets is of great importance but it often requires data that are unavailable or available at a very low frequency. For this reason, systemic risk assessment with partial information is potentially very useful for regulators and other stakeholders. In this paper we consider systemic risk due to fire sales spillover and portfolio rebalancing by using the risk metrics defined by Greenwood et al. (2015). By using the Maximum Entropy principle we propose a method to assess aggregated and single bank's systemicness and vulnerability and to statistically test for a change in these variables when only the information on the size of each bank and the capitalization of the investment assets are available. We prove the effectiveness of our method on 2001-2013 quarterly data of US banks for which portfolio composition is available.Comment: 36 pages, 6 figures, Accepted on Journal of Economic Dynamics and Contro
    • …
    corecore