8,661 research outputs found

    Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems

    Full text link
    The first-ever Ukraine cyberattack on power grid has proven its devastation by hacking into their critical cyber assets. With administrative privileges accessing substation networks/local control centers, one intelligent way of coordinated cyberattacks is to execute a series of disruptive switching executions on multiple substations using compromised supervisory control and data acquisition (SCADA) systems. These actions can cause significant impacts to an interconnected power grid. Unlike the previous power blackouts, such high-impact initiating events can aggravate operating conditions, initiating instability that may lead to system-wide cascading failure. A systemic evaluation of "nightmare" scenarios is highly desirable for asset owners to manage and prioritize the maintenance and investment in protecting their cyberinfrastructure. This survey paper is a conceptual expansion of real-time monitoring, anomaly detection, impact analyses, and mitigation (RAIM) framework that emphasizes on the resulting impacts, both on steady-state and dynamic aspects of power system stability. Hypothetically, we associate the combinatorial analyses of steady state on substations/components outages and dynamics of the sequential switching orders as part of the permutation. The expanded framework includes (1) critical/noncritical combination verification, (2) cascade confirmation, and (3) combination re-evaluation. This paper ends with a discussion of the open issues for metrics and future design pertaining the impact quantification of cyber-related contingencies

    Modeling smart grids as complex systems through the implementation of intelligent hubs

    Get PDF
    ICINCO 2010The electrical system is undergoing a profound change of state, which will lead to what is being called the smart grid. The necessity of a complex system approach to cope with ongoing changes is presented: combining a systemic approach based on complexity science with the classical views of electrical grids is important for an understanding the behavior of the future grid. Key issues like different layers and inter-layer devices, as well as subsystems are discussed and proposed as a base to create an agent-based system model to run simulations

    Modelling and Co-simulation of Multi-Energy Systems: Distributed Software Methods and Platforms

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Modelling and Simulation of Electrical Energy Systems through a Complex Systems Approach using Agent-Based Models

    Get PDF
    Complexity science aims to better understand the processes of both natural and man-made systems which are composed of many interacting entities at different scales. A disaggregated approach is proposed for simulating electricity systems, by using agent-based models coupled to continuous ones. The approach can help in acquiring a better understanding of the operation of the system itself, e.g. on emergent phenomena or scale effects; as well as in the improvement and design of future smart grids

    Integrating building and urban semantics to empower smart water solutions

    Get PDF
    Current urban water research involves intelligent sensing, systems integration, proactive users and data-driven management through advanced analytics. The convergence of building information modeling with the smart water field provides an opportunity to transcend existing operational barriers. Such research would pave the way for demand-side management, active consumers, and demand-optimized networks, through interoperability and a system of systems approach. This paper presents a semantic knowledge management service and domain ontology which support a novel cloud-edge solution, by unifying domestic socio-technical water systems with clean and waste networks at an urban scale, to deliver value-added services for consumers and network operators. The web service integrates state of the art sensing, data analytics and middleware components. We propose an ontology for the domain which describes smart homes, smart metering, telemetry, and geographic information systems, alongside social concepts. This integrates previously isolated systems as well as supply and demand-side interventions, to improve system performance. A use case of demand-optimized management is introduced, and smart home application interoperability is demonstrated, before the performance of the semantic web service is presented and compared to alternatives. Our findings suggest that semantic web technologies and IoT can merge to bring together large data models with dynamic data streams, to support powerful applications in the operational phase of built environment systems

    GAMES: a General-purpose Architectural model for Multi-Energy System engineering applications

    Get PDF
    The growing interest in Multi-Energy Systems (MES) leads the scientific community to implement innovative technologies to analyse and simulate these complex systems. Two main research trends are identified in such analysis: i) improve the usability and capability of preexisting reference architectures in the energy field to cope with high-level use case descriptions, and ii) study the interoperability of such reference architectures in order to increase systematic and functional analysis of MES use cases. GAMES is a a general-purpose architectural model for MES engineering application. The aim is twofold: i) GAMES implements an extension of Smart Grid Architecture Model (SGAM) to cope with MES use case descriptions, and ii) it offers a methodology to deal with a systemic description of the use case through a combination of UML and SysML integrated in the proposed architectural model. Furthermore, GAMES will allow the implementation of Domain Specific Language (DSL) and hardware configuration for the specific components described by UML/SysML diagrams. Compared to other solutions, GAMES allows to assess both research trends in a single hierarchical ICT infrastructure

    Towards the next generation of smart grids: semantic and holonic multi-agent management of distributed energy resources

    Get PDF
    The energy landscape is experiencing accelerating change; centralized energy systems are being decarbonized, and transitioning towards distributed energy systems, facilitated by advances in power system management and information and communication technologies. This paper elaborates on these generations of energy systems by critically reviewing relevant authoritative literature. This includes a discussion of modern concepts such as ‘smart grid’, ‘microgrid’, ‘virtual power plant’ and ‘multi-energy system’, and the relationships between them, as well as the trends towards distributed intelligence and interoperability. Each of these emerging urban energy concepts holds merit when applied within a centralized grid paradigm, but very little research applies these approaches within the emerging energy landscape typified by a high penetration of distributed energy resources, prosumers (consumers and producers), interoperability, and big data. Given the ongoing boom in these fields, this will lead to new challenges and opportunities as the status-quo of energy systems changes dramatically. We argue that a new generation of holonic energy systems is required to orchestrate the interplay between these dense, diverse and distributed energy components. The paper therefore contributes a description of holonic energy systems and the implicit research required towards sustainability and resilience in the imminent energy landscape. This promotes the systemic features of autonomy, belonging, connectivity, diversity and emergence, and balances global and local system objectives, through adaptive control topologies and demand responsive energy management. Future research avenues are identified to support this transition regarding interoperability, secure distributed control and a system of systems approach

    Energy and complexity: new ways forward

    Get PDF
    The purpose of this paper is to review the application of complexity science methods in understanding energy systems and system change. The challenge of moving to sustainable energy systems which provide secure, affordable and low-carbon energy services requires the application of methods which recognise the complexity of energy systems in relation to social, technological, economic and environmental aspects. Energy systems consist of many actors, interacting through networks, leading to emergent properties and adaptive and learning processes. Insights on these type of phenomena have been investigated in other contexts by complex systems theory. However, these insights are only recently beginning to be applied to understanding energy systems and systems transitions. The paper discusses the aspects of energy systems (in terms of technologies, ecosystems, users, institutions, business models) that lend themselves to the application of complexity science and its characteristics of emergence and coevolution. Complex-systems modelling differs from standard (e.g. economic) modelling and offers capabilities beyond those of conventional models, yet these methods are only beginning to realize anything like their full potential to address the most critical energy challenges. In particular there is significant potential for progress in understanding those challenges that reside at the interface of technology and behaviour. Some of the computational methods that are currently available are reviewed: agent-based and network modelling. The advantages and limitations of these modelling techniques are discussed. Finally, the paper considers the emerging themes of transport, energy behaviour and physical infrastructure systems in recent research from complex-systems energy modelling. Although complexity science is not well understood by practitioners in the energy domain (and is often difficult to communicate), models can be used to aid decision-making at multiple levels e.g. national and local, and to aid understanding and allow decision making. The techniques and tools of complexity science, therefore, offer a powerful means of understanding the complex decision-making processes that are needed to realise a low-carbon energy system. We conclude with recommendations for future areas of research and application
    • …
    corecore