463 research outputs found

    Systematic study of the effect of HSE functional internal parameters on the electronic structure and band gap of a representative set of metal oxides

    Get PDF
    The effect of the amount of Hartree-Fock mixing parameter (α) and of the screening parameter (w) defining the range separated HSE type hybrid functional is systematically studied for a series of seven metal oxides: TiO2, ZrO2, CuO2, ZnO, MgO, SnO2, and SrTiO3. First, reliable band gap values were determined by comparing the optimal α reproducing the experiment with the inverse of the experimental dielectric constant. Then, the effect of the w in the HSE functional on the calculated band gap was explored in detail. Results evidence the existence of a virtually infinite number of combinations of the two parameters which are able to reproduce the experimental band gap, without a unique pair able to describe the full studied set of materials. Nevertheless, the results point out the possibility of describing the electronic structure of these materials through a functional including a screened HF exchange and an appropriate correlation contribution

    Screened hybrid functional applied to 3d^0-->3d^8 transition-metal perovskites LaMO3 (M=Sc-Cu): influence of the exchange mixing parameter on the structural, electronic and magnetic properties

    Full text link
    We assess the performance of the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid density functional scheme applied to the perovskite family LaMO3 (M=Sc-Cu) and discuss the role of the mixing parameter alpha (which determines the fraction of exact Hartree-Fock exchange included in the density functional theory (DFT) exchange-correlation functional) on the structural, electronic, and magnetic properties. The physical complexity of this class of compounds, manifested by the largely varying electronic characters (band/Mott-Hubbard/charge-transfer insulators and metals), magnetic orderings, structural distortions (cooperative Jahn-Teller like instabilities), as well as by the strong competition between localization/delocalization effects associated with the gradual filling of the t_2g and e_g orbitals, symbolize a critical and challenging case for theory. Our results indicates that HSE is able to provide a consistent picture of the complex physical scenario encountered across the LaMO3 series and significantly improve the standard DFT description. The only exceptions are the correlated paramagnetic metals LaNiO3 and LaCuO3, which are found to be treated better within DFT. By fitting the ground state properties with respect to alpha we have constructed a set of 'optimum' values of alpha from LaScO3 to LaCuO3: it is found that the 'optimum' mixing parameter decreases with increasing filling of the d manifold (LaScO3: 0.25; LaTiO3 & LaVO3: 0.10-0.15; LaCrO3, LaMnO3, and LaFeO3: 0.15; LaCoO3: 0.05; LaNiO3 & LaCuO3: 0). This trend can be nicely correlated with the modulation of the screening and dielectric properties across the LaMO3 series, thus providing a physical justification to the empirical fitting procedure.Comment: 32 pages, 29 figure

    Accuracy of dielectric-dependent hybrid functionals in the prediction of optoelectronic properties of metal oxide semiconductors: a comprehensive comparison with many-body GW and experiments

    Get PDF
    Understanding the electronic structure of metal oxide semiconductors is crucial to their numerous technological applications, such as photoelectrochemical water splitting and solar cells. The needed experimental and theoretical knowledge goes beyond that of pristine bulk crystals, and must include the effects of surfaces and interfaces, as well as those due to the presence of intrinsic defects (e.g. oxygen vacancies), or dopants for band engineering. In this review, we present an account of the recent efforts in predicting and understanding the optoelectronic properties of oxides using ab initio theoretical methods. In particular, we discuss the performance of recently developed dielectric-dependent hybrid functionals, providing a comparison against the results of many-body GW calculations, including G 0 W 0 as well as more refined approaches, such as quasiparticle self-consistent GW. We summarize results in the recent literature for the band gap, the band level alignment at surfaces, and optical transition energies in defective oxides, including wide gap oxide semiconductors and transition metal oxides. Correlated transition metal oxides are also discussed. For each method, we describe successes and drawbacks, emphasizing the challenges faced by the development of improved theoretical approaches. The theoretical section is preceded by a critical overview of the main experimental techniques needed to characterize the optoelectronic properties of semiconductors, including absorption and reflection spectroscopy, photoemission, and scanning tunneling spectroscopy (STS)

    Desenvolupament de models per nanopartícules de TiO2 i ZnO en fotocatàlisis

    Get PDF
    [cat] En aquesta tesi s’han realitzat càlculs DFT per tal d’estudiar els sistemes TiO2 i ZnO i poder analitzar-ne les característiques de l’estructura electrònica, geometria i estabilitat energètica principalment. Primerament s’ha estudiat el funcionament de diferents metodologies computacionals per veure quina d’elles es la optima per realitzar aquests estudis. Aquesta metodologia ha estat provada i posteriorment utilitzada per els càlculs realitzats sobre el TiO2 i ZnO. Motivats per l’interès en l’estructura electrònica del òxid de titani amb intenció de poder augmentar-ne la seva activitat fotocatalítica. Hem realitzat diferents estudis sobre l’efecte de les vacants d’oxigen i el dòping amb fluor en el band gap del material. Observant com en tots dos casos apareixen estats electrònics nous al band gap del material. També s’ha estudiat el perfil energètic de la difusió de fluor en el sinus del material i l’efecte de l’adsorció de fluor en l’estabilitat de les superfícies de TiO2. Observant com la difusió es á energèticament favorable en certes direccions i que l’adsorció de fluor, apart de generar nous estats electrònics, també canvia l’estabilitat de les diferents superfícies. Fent que les nanopartícules presentin formes diferents i una millor activitat fotocatalítica. Hem extret similars conclusions en el cas de l’adsorció d’ àcid trifluoroacetic, ja que també afavoreix l’increment de la superfície mes reactiva per el TiO2 en la fase anatasa. L’estabilitat relativa i l’evolució de les propietats electròniques de les nanopartícules de TiO2 també ha estat font d’estudi. Observant com per mides inferiors a 125 unitats de TiO2 les nanopartícules no cristal·lines resulten mes estables. Però pera mides superiors, les nanopartícules cristal·lines son mes estables i les seves propietats electròniques convergeixen cap a les del sòlid. Analitzant els nostres resultats hem pogut predir que nanopartícules amb mides compreses entre 18 i 23 nm ja haurien de mostrar propietats i electròniques molt similars a les del sòlid bulk. De forma similar també s’ha estudiat el perfil d’estabilitats relatives de nanopartícules d’òxid de zinc, permetent-nos crear així una imatge del perfil d’estabilitat que presenten cinc famílies de nanopartícules amb diferent forma derivades de les fases mes estables per aquest material. L’estudi s’ha realitzat per un rang de nanopartícules que va des dels pocs àtoms fins a nanocristalls amb mes de 1000, Reportant-ne així les variacions d’estabilitat en front a la mida de partícula. Aquests estudis presentats en aquesta tesi poden ser útils de cara a millorar el coneixement d’aquests materials tan prometedors i poder trobar diferents estratègies per tal de millorar-ne la seva activitat fotocatalítica.[eng] In this thesis DFT based methods have been used in order to study TiO2 and ZnO systems, by analysing their electronic structure, geometrical features and energetic stability. A systematic study of the performance of the different computational methodologies has been carried on in order to find a suitable methodology able to describe the electronic features of these semiconductors. This is a key point because the electronic structure is directly related with its photocatalytic activity. One of its more interesting properties from an energetic and technologic point of view. Once the more suitable methodology to describe TiO2 electronic features was found, we tested it with a set of metal oxides, including ZnO. Obtaining also good results. Interested in the electronic structure of TiO2, and with the aim to improve the description of its photocatalytic activity. We performed several studies about the effect of oxygen vacancies,and fluor doping,on the band gap of the different TiO2 bulk polymorphs. Observing in both cases the new electronics states that lay in the band gap. For the oxygen vacancies the new states where found to be close to the conduction band,meanwhile for the fluordoping they were found to be near the valence band. This last case is very interesting because it can increase the photocatalytical activity of this material by shifting to the visible the type of wavelength absorbed by TiO2. Continuing with the study of the interaction between fluor and titanium oxide, we investigated the diffusion paths of fluor trough the TiO2 lattice and how the adsorption of fluor and trifluoroacetic acid adsorption can affect the electronic structure of the and specially the stability of the different surfaces. Finding how the fluor adsorption have similar effects to doping generating electronic states in the band gap while at same time change the order of stability between the (101) and (001) surfaces. Becoming the second one, which seem to be more active, more stable and subsequently more exposed. The same effect on the surface stability was found for the fluoroacetic acid adsorption. We also studied the stability and electronic structure of TiO2 nanostructures sampling a range that goes from a few atoms to more than 1000. Analysing the data obtained we found that the electronic properties depend on the shape significantly for the smaller nanoclusters but not for the larger nanoparticles. Where the size has a stronger effect on the electronic structure. It was also observed the non-crystalline nanoparticles to be more stable than the crystalline ones up to a size approximately 125 TiO2 units. This is an important point to predict the different properties expected for particles of a certain size. Also from the results obtained for the larger crystalline nanoparticles we observed how the electronic properties evolve the bulk ones as the size increases. From this data we could extrapolate that probably nanoparticles with sizes between 18 and 23 nm could present bulk-like electronic structure and subsequently photoactivity. A study in collaboration with experimental co-workers was done in order to explain theoretically the different activity presented by ZnO nanoparticles of different shape. These nanoparticles exposed different proportions of polar and non-polar surfaces. After analysing electronic structure and energetic stability of the different surfaces we found that in this case the higher activity was not closely related with the different electronic features. In the case of these large ZnO nanoparticles the activity was more related about the presence of a larger amount of polar surface exposed. This surface seem to stabilize the holes generated in the process of light adsorption. One last study is included in this thesis. The study about the relative stability of different ZnO nanostructures and its evolution with size. Five families of nanostructures where studied. In a range that goes from few ZnO units to more than 1000. The type of nanostructures studied are. Nano-cages, Multi-layered nano-cages, Sodalite bulk cuts, BCT bulk cuts and Wurtzite bulk cuts. Finding the nano-cages and multi-layered nano- cages especially stable for smaller sizes. When the diameter of the nanoparticles reach the region around 2.6 nm both types of nanocages, sodalite bulk cuts and BCT bulk cuts present very similar stability creating a transition zone. As the size of the particles increases,the BCT bulk cuts become the most stable nanoparticles up to sizes about 4.7 nm where the Wurtzite nanoparticle become the most stable. All these studies presented in this thesis are useful to increase the knowledge about these very promising materials and allow to develop different strategies to improve their photocatalytic activity

    First-Principles Theoretical Studies of Bulk, Defect and Interface properties of Oxide Semiconductors

    Get PDF
    Oxide semiconductors have been shown to exhibit rich physics related to their bulk, defect and interface properties. First-principles calculations have and will continue to play a major role in developing an understanding of the microscopic origins of these phenomena. In this thesis, first-principles studies are presented for several oxide semiconductors, with a view to understand how their microscopic properties ultimately determine device functionality. In Chapter 3, a detailed study of bulk SrZrO3 and Sr(Ti,Zr)O3 alloys is performed. For Sr(Ti,Zr)O3 alloys with 50% Ti concentration, we find that arranging the Ti and Zr atoms into a 1×1 SrZrO3/SrTiO3 superlattice along the [001] direction leads to breaking of the conduction band t2g orbital degeneracy, which could suppress scattering due to electron-phonon interactions. In Chapter 4, we present an investigation into the properties of native defects and hydrogen in SrZrO3. It is found that oxygen and strontium vacancies are the dominant defects in the absence of impurity doping, and will form deep donor and deep acceptor states, respectively. Hydrogen is found to be amphoteric in this material at different lattice sites; additionally, this impurity forms a stable complex with oxygen vacancies. In Chapter 5, the tendency for ABO3 perovskite oxides with 3dn B-cations to exhibit ferroelectricity and multiferroicity is investigated. Using the LaBO3 series as a model, we find that initially, as electrons are added to the B-cation d orbital, the tendency for the system to exhibit a ferroelectric distortion disappears - however, for high spin d5 - d7 and d8 cations a strong ferroelectric instability is recovered, and this effect is explained within the pseudo Jahn-Teller theory for ferroelectricity. This finding provides a new route for the design of strongly coupled magnetoelectric materials. In Chapters 6 and 7 the fundamental properties of the technologically important oxide heterostructure systems ZnO/MgZnO and SrTiO3/LaAlO3 are characterized. For the latter, we identify a previously unreported mechanism for interface induced magnetism based on surface aluminium vacancies, which will aid in interpreting experimental results for this system and other polar/non-polar oxide heterostructures

    First-Principles Theoretical Studies of Bulk, Defect and Interface properties of Oxide Semiconductors

    Get PDF
    Oxide semiconductors have been shown to exhibit rich physics related to their bulk, defect and interface properties. First-principles calculations have and will continue to play a major role in developing an understanding of the microscopic origins of these phenomena. In this thesis, first-principles studies are presented for several oxide semiconductors, with a view to understand how their microscopic properties ultimately determine device functionality. In Chapter 3, a detailed study of bulk SrZrO3 and Sr(Ti,Zr)O3 alloys is performed. For Sr(Ti,Zr)O3 alloys with 50% Ti concentration, we find that arranging the Ti and Zr atoms into a 1×1 SrZrO3/SrTiO3 superlattice along the [001] direction leads to breaking of the conduction band t2g orbital degeneracy, which could suppress scattering due to electron-phonon interactions. In Chapter 4, we present an investigation into the properties of native defects and hydrogen in SrZrO3. It is found that oxygen and strontium vacancies are the dominant defects in the absence of impurity doping, and will form deep donor and deep acceptor states, respectively. Hydrogen is found to be amphoteric in this material at different lattice sites; additionally, this impurity forms a stable complex with oxygen vacancies. In Chapter 5, the tendency for ABO3 perovskite oxides with 3dn B-cations to exhibit ferroelectricity and multiferroicity is investigated. Using the LaBO3 series as a model, we find that initially, as electrons are added to the B-cation d orbital, the tendency for the system to exhibit a ferroelectric distortion disappears - however, for high spin d5 - d7 and d8 cations a strong ferroelectric instability is recovered, and this effect is explained within the pseudo Jahn-Teller theory for ferroelectricity. This finding provides a new route for the design of strongly coupled magnetoelectric materials. In Chapters 6 and 7 the fundamental properties of the technologically important oxide heterostructure systems ZnO/MgZnO and SrTiO3/LaAlO3 are characterized. For the latter, we identify a previously unreported mechanism for interface induced magnetism based on surface aluminium vacancies, which will aid in interpreting experimental results for this system and other polar/non-polar oxide heterostructures

    The Computational 2D Materials Database: High-Throughput Modeling and Discovery of Atomically Thin Crystals

    Get PDF
    We introduce the Computational 2D Materials Database (C2DB), which organises a variety of structural, thermodynamic, elastic, electronic, magnetic, and optical properties of around 1500 two-dimensional materials distributed over more than 30 different crystal structures. Material properties are systematically calculated by state-of-the art density functional theory and many-body perturbation theory (G0 ⁣_0\!W\!_0 and the Bethe-Salpeter Equation for \sim200 materials) following a semi-automated workflow for maximal consistency and transparency. The C2DB is fully open and can be browsed online or downloaded in its entirety. In this paper, we describe the workflow behind the database, present an overview of the properties and materials currently available, and explore trends and correlations in the data. Moreover, we identify a large number of new potentially synthesisable 2D materials with interesting properties targeting applications within spintronics, (opto-)electronics, and plasmonics. The C2DB offers a comprehensive and easily accessible overview of the rapidly expanding family of 2D materials and forms an ideal platform for computational modeling and design of new 2D materials and van der Waals heterostructures.Comment: Add journal reference and DOI; Minor updates to figures and wordin

    Shining Light on The Phase Transitions of Vanadium Dioxide

    Get PDF
    The salient feature of the familiar structural transition accompanying the thermally-driven metal-insulator transition in bulk vanadium dioxide (VO2) is a pairing of all the vanadium ions in the monoclinic M¬1 insulating phase. Whether this pairing (unit cell doubling) alone is sufficient to open the energy gap has been the central question of a classic debate which has continued for almost sixty years. Interestingly, there are two less familiar insulating states, monoclinic M2 and triclinic, which are accessible via strain or chemical doping. These phases are noteworthy in that they exhibit distinctly different V-V pairing. With infrared and optical photon spectroscopy, we investigate how the changes in crystal structure affect the electronic structure. We find that the energy gap and optical inter-band transitions are insensitive to changes in the vanadium-vanadium pairing. This result is confirmed by DFT+U and HSE calculations. Hence, our work conclusively establishes that intra-atomic Coulomb repulsion between electrons provides the dominant contribution to the energy gap in all insulating phases of VO2. VO2 is a candidate material for novel technologies, including ultrafast data storage, memristors, photonic switches, smart windows, and transistors which move beyond the limitations of silicon. The attractiveness of correlated materials for technological application is due to their novel properties that can be tuned by external factors such as strain, chemical doping, and applied fields. For advances in fundamental physics and applications, it is imperative that these properties be measured over a wide range of regimes. Towards this end, we study a single domain VO2 crystal with polarized light to characterize the anisotropy of the optical properties. In addition, we study the effects of compressive strain in a VO2 thin film in which we observe remarkable changes in electronic structure and transition temperature. Furthermore, we find evidence that electronic correlations are active in the metallic rutile phase as well. VO2 films exhibit phase coexistence in the vicinity of the metal-insulator transition. Using scanning near-field infrared microscopy, we have studied the patterns of phase coexistence in the same area on repeated heating and cooling cycles. We find that the pattern formation is reproducible each time. This is an unexpected result from the viewpoint of classical nucleation theory that anticipates some degree of randomness. The completely deterministic nature of nucleation and growth of domains in a VO2 film with imperfections is a fundamental finding. This result also holds promise for producing reliable nanoscale VO2 devices
    corecore