3,351 research outputs found

    A smartphone-based health care chatbot to promote self-management of chronic pain (SELMA) : pilot randomized controlled trial

    Get PDF
    Background: Ongoing pain is one of the most common diseases and has major physical, psychological, social, and economic impacts. A mobile health intervention utilizing a fully automated text-based health care chatbot (TBHC) may offer an innovative way not only to deliver coping strategies and psychoeducation for pain management but also to build a working alliance between a participant and the TBHC. Objective: The objectives of this study are twofold: (1) to describe the design and implementation to promote the chatbot painSELfMAnagement (SELMA), a 2-month smartphone-based cognitive behavior therapy (CBT) TBHC intervention for pain self-management in patients with ongoing or cyclic pain, and (2) to present findings from a pilot randomized controlled trial, in which effectiveness, influence of intention to change behavior, pain duration, working alliance, acceptance, and adherence were evaluated. Methods: Participants were recruited online and in collaboration with pain experts, and were randomized to interact with SELMA for 8 weeks either every day or every other day concerning CBT-based pain management (n=59), or weekly concerning content not related to pain management (n=43). Pain-related impairment (primary outcome), general well-being, pain intensity, and the bond scale of working alliance were measured at baseline and postintervention. Intention to change behavior and pain duration were measured at baseline only, and acceptance postintervention was assessed via self-reporting instruments. Adherence was assessed via usage data. Results: From May 2018 to August 2018, 311 adults downloaded the SELMA app, 102 of whom consented to participate and met the inclusion criteria. The average age of the women (88/102, 86.4%) and men (14/102, 13.6%) participating was 43.7 (SD 12.7) years. Baseline group comparison did not differ with respect to any demographic or clinical variable. The intervention group reported no significant change in pain-related impairment (P=.68) compared to the control group postintervention. The intention to change behavior was positively related to pain-related impairment (P=.01) and pain intensity (P=.01). Working alliance with the TBHC SELMA was comparable to that obtained in guided internet therapies with human coaches. Participants enjoyed using the app, perceiving it as useful and easy to use. Participants of the intervention group replied with an average answer ratio of 0.71 (SD 0.20) to 200 (SD 58.45) conversations initiated by SELMA. Participants’ comments revealed an appreciation of the empathic and responsible interaction with the TBHC SELMA. A main criticism was that there was no option to enter free text for the patients’ own comments. Conclusions: SELMA is feasible, as revealed mainly by positive feedback and valuable suggestions for future revisions. For example, the participants’ intention to change behavior or a more homogenous sample (eg, with a specific type of chronic pain) should be considered in further tailoring of SELMA

    Text messaging and brief phone calls for weight loss in overweight and obese English- and Spanish-speaking adults: A 1-year, parallel-group, randomized controlled trial.

    Get PDF
    BACKGROUND:Weight loss interventions based solely on text messaging (short message service [SMS]) have been shown to be modestly effective for short periods of time and in some populations, but limited evidence is available for positive longer-term outcomes and for efficacy in Hispanic populations. Also, little is known about the comparative efficacy of weight loss interventions that use SMS coupled with brief, technology-mediated contact with health coaches, an important issue when considering the scalability and cost of interventions. We examined the efficacy of a 1-year intervention designed to reduce weight among overweight and obese English- and Spanish-speaking adults via SMS alone (ConTxt) or in combination with brief, monthly health-coaching calls. ConTxt offered 2-4 SMS/day that were personalized, tailored, and interactive. Content was theory- and evidence-based and focused on reducing energy intake and increasing energy expenditure. Monthly health-coaching calls (5-10 minutes' duration) focused on goal-setting, identifying barriers to achieving goals, and self-monitoring. METHODS AND FINDINGS:English- and Spanish-speaking adults were recruited from October 2011 to March 2013. A total of 298 overweight (body mass index [BMI] 27.0 to 39.9 kg/m2) adults (aged 21-60 years; 77% female; 41% Hispanic; 21% primarily Spanish speaking; 44% college graduates or higher; 22% unemployed) were randomly assigned (1:1) to receive either ConTxt only (n = 101), ConTxt plus health-coaching calls (n = 96), or standard print materials on weight reduction (control group, n = 101). We used computer-based permuted-block randomization with block sizes of three or six, stratified by sex and Spanish-speaking status. Participants, study staff, and investigators were masked until the intervention was assigned. The primary outcome was objectively measured percent of weight loss from baseline at 12 months. Differences between groups were evaluated using linear mixed-effects regression within an intention-to-treat framework. A total of 261 (87.2%) and 253 (84.9%) participants completed 6- and 12-month visits, respectively. Loss to follow-up did not differ by study group. Mean (95% confidence intervals [CIs]) percent weight loss at 12 months was -0.61 (-1.99 to 0.77) in the control group, -1.68 (-3.08 to -0.27) in ConTxt only, and -3.63 (-5.05 to -2.81) in ConTxt plus health-coaching calls. At 12 months, mean (95% CI) percent weight loss, adjusted for baseline BMI, was significantly different between ConTxt plus health-coaching calls and the control group (-3.0 [-4.99 to -1.04], p = 0.003) but not between the ConTxt-only and the control group (-1.07 [-3.05 to 0.92], p = 0.291). Differences between ConTxt plus health-coaching calls and ConTxt only were not significant (-1.95 [-3.96 to 0.06], p = 0.057). These findings were consistent across other weight-related secondary outcomes, including changes in absolute weight, BMI, and percent body fat at 12 months. Exploratory subgroup analyses suggested that Spanish speakers responded more favorably to ConTxt plus health-coaching calls than English speakers (Spanish contrast: -7.90 [-11.94 to -3.86], p < 0.001; English contrast: -1.82 [-4.03 to 0.39], p = 0.107). Limitations include the unblinded delivery of the intervention and recruitment of a predominantly female sample from a single site. CONCLUSIONS:A 1-year intervention that delivered theory- and evidence-based weight loss content via daily personalized, tailored, and interactive SMS was most effective when combined with brief, monthly phone calls. TRIAL REGISTRATION:ClinicalTrials.gov NCT01171586

    Influences on the Uptake of and Engagement With Health and Well-Being Smartphone Apps: Systematic Review

    Get PDF
    Background: The public health impact of health and well-being digital interventions is dependent upon sufficient real-world uptake and engagement. Uptake is currently largely dependent on popularity indicators (eg, ranking and user ratings on app stores), which may not correspond with effectiveness, and rapid disengagement is common. Therefore, there is an urgent need to identify factors that influence uptake and engagement with health and well-being apps to inform new approaches that promote the effective use of such tools. Objective: This review aimed to understand what is known about influences on the uptake of and engagement with health and well-being smartphone apps among adults. Methods: We conducted a systematic review of quantitative, qualitative, and mixed methods studies. Studies conducted on adults were included if they focused on health and well-being smartphone apps reporting on uptake and engagement behavior. Studies identified through a systematic search in Medical Literature Analysis and Retrieval System Online, or MEDLARS Online (MEDLINE), EMBASE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsychINFO, Scopus, Cochrane library databases, DataBase systems and Logic Programming (DBLP), and Association for Computing Machinery (ACM) Digital library were screened, with a proportion screened independently by 2 authors. Data synthesis and interpretation were undertaken using a deductive iterative process. External validity checking was undertaken by an independent researcher. A narrative synthesis of the findings was structured around the components of the capability, opportunity, motivation, behavior change model and the theoretical domains framework (TDF). Results: Of the 7640 identified studies, 41 were included in the review. Factors related to uptake (U), engagement (E), or both (B) were identified. Under capability, the main factors identified were app literacy skills (B), app awareness (U), available user guidance (B), health information (E), statistical information on progress (E), well-designed reminders (E), features to reduce cognitive load (E), and self-monitoring features (E). Availability at low cost (U), positive tone, and personalization (E) were identified as physical opportunity factors, whereas recommendations for health and well-being apps (U), embedded health professional support (E), and social networking (E) possibilities were social opportunity factors. Finally, the motivation factors included positive feedback (E), available rewards (E), goal setting (E), and the perceived utility of the app (E). Conclusions: Across a wide range of populations and behaviors, 26 factors relating to capability, opportunity, and motivation appear to influence the uptake of and engagement with health and well-being smartphone apps. Our recommendations may help app developers, health app portal developers, and policy makers in the optimization of health and well-being apps

    Toward a process theory of entrepreneurship: revisiting opportunity identification and entrepreneurial actions

    Get PDF
    This dissertation studies the early development of new ventures and small business and the entrepreneurship process from initial ideas to viable ventures. I unpack the micro-foundations of entrepreneurial actions and new ventures’ investor communications through quality signals to finance their growth path. This dissertation includes two qualitative papers and one quantitative study. The qualitative papers employ an inductive multiple-case approach and include seven medical equipment manufacturers (new ventures) in a nascent market context (the mobile health industry) across six U.S. states and a secondary data analysis to understand the emergence of opportunities and the early development of new ventures. The quantitative research chapter includes 770 IPOs in the manufacturing industries in the U.S. and investigates the legitimation strategies of young ventures to gain resources from targeted resource-holders.Open Acces

    The Role of Mobile Health Technologies in Allergy Care:an EAACI Position Paper

    Get PDF
    Mobile health (mHealth) uses mobile communication devices such as smartphones and tablet computers to support and improve health-related services, data and information flow, patient self-management, surveillance, and disease management from the moment of first diagnosis to an optimized treatment. The European Academy of Allergy and Clinical Immunology created a task force to assess the state of the art and future potential of mHealth in allergology. The task force endorsed the "Be He@lthy, Be Mobile" WHO initiative and debated the quality, usability, efficiency, advantages, limitations, and risks of mobile solutions for allergic diseases. The results are summarized in this position paper, analyzing also the regulatory background with regard to the "General Data Protection Regulation" and Medical Directives of the European Community. The task force assessed the design, user engagement, content, potential of inducing behavioral change, credibility/accountability, and privacy policies of mHealth products. The perspectives of healthcare professionals and allergic patients are discussed, underlining the need of thorough investigation for an effective design of mHealth technologies as auxiliary tools to improve quality of care. Within the context of precision medicine, these could facilitate the change in perspective from clinician- to patient-centered care. The current and future potential of mHealth is then examined for specific areas of allergology, including allergic rhinitis, aerobiology, allergen immunotherapy, asthma, dermatological diseases, food allergies, anaphylaxis, insect venom, and drug allergy. The impact of mobile technologies and associated big data sets are outlined. Facts and recommendations for future mHealth initiatives within EAACI are listed

    Analysis of the Adherence of mHealth Applications to HIPAA Technical Safeguards

    Get PDF
    The proliferation of mobile health technology, or mHealth apps, has made it essential to protect individual health details. People now have easy access to digital platforms that allow them to save, share, and access their medical data and treatment information as well as easily monitor and manage health-related issues. It is crucial to make sure that protected health information (PHI) is effectively and securely transmitted, received, created, and maintained in accordance with the rules outlined by the Health Insurance Portability and Accountability Act (HIPAA), as the use of mHealth apps increases. Unfortunately, many mobile app developers, particularly those of mHealth apps, do not completely understand the HIPAA security and privacy requirements. This offers a unique opportunity for research to create an analytical framework that can help programmers maintain safe and HIPAA-compliant source code while also educating users about the security and privacy of private health information. The plan is to develop a framework which will serve as the foundation for developing an integrated development environment (IDE) plugin for mHealth app developers and a web-based interface for mHealth app consumers. This will help developers identify and address HIPAA compliance issues during the development process and provide consumers with a tool to evaluate the privacy and security of mHealth apps before downloading and using them. The goal is to encourage the development of secure and compliant mHealth apps that safeguard personal health information
    corecore