4,078 research outputs found

    Systematic gene function prediction from gene expression data by using a fuzzy nearest-cluster method

    Get PDF
    BACKGROUND: Quantitative simultaneous monitoring of the expression levels of thousands of genes under various experimental conditions is now possible using microarray experiments. However, there are still gaps toward whole-genome functional annotation of genes using the gene expression data. RESULTS: In this paper, we propose a novel technique called Fuzzy Nearest Clusters for genome-wide functional annotation of unclassified genes. The technique consists of two steps: an initial hierarchical clustering step to detect homogeneous co-expressed gene subgroups or clusters in each possibly heterogeneous functional class; followed by a classification step to predict the functional roles of the unclassified genes based on their corresponding similarities to the detected functional clusters. CONCLUSION: Our experimental results with yeast gene expression data showed that the proposed method can accurately predict the genes' functions, even those with multiple functional roles, and the prediction performance is most independent of the underlying heterogeneity of the complex functional classes, as compared to the other conventional gene function prediction approaches

    Preparation and characterization of magnetite (Fe3O4) nanoparticles By Sol-Gel method

    Get PDF
    The magnetite (Fe3O4) nanoparticles were successfully synthesized and annealed under vacuum at different temperature. The Fe3O4 nanoparticles prepared via sol-gel assisted method and annealed at 200-400ºC were characterized by Fourier Transformation Infrared Spectroscopy (FTIR), X-ray Diffraction spectra (XRD), Field Emission Scanning Electron Microscope (FESEM) and Atomic Force Microscopy (AFM). The XRD result indicate the presence of Fe3O4 nanoparticles, and the Scherer`s Formula calculated the mean particles size in range of 2-25 nm. The FESEM result shows that the morphologies of the particles annealed at 400ºC are more spherical and partially agglomerated, while the EDS result indicates the presence of Fe3O4 by showing Fe-O group of elements. AFM analyzed the 3D and roughness of the sample; the Fe3O4 nanoparticles have a minimum diameter of 79.04 nm, which is in agreement with FESEM result. In many cases, the synthesis of Fe3O4 nanoparticles using FeCl3 and FeCl2 has not been achieved, according to some literatures, but this research was able to obtained Fe3O4 nanoparticles base on the characterization results

    Tumor classification and marker gene prediction by feature selection and fuzzy c-means clustering using microarray data

    Get PDF
    BACKGROUND: Using DNA microarrays, we have developed two novel models for tumor classification and target gene prediction. First, gene expression profiles are summarized by optimally selected Self-Organizing Maps (SOMs), followed by tumor sample classification by Fuzzy C-means clustering. Then, the prediction of marker genes is accomplished by either manual feature selection (visualizing the weighted/mean SOM component plane) or automatic feature selection (by pair-wise Fisher's linear discriminant). RESULTS: The proposed models were tested on four published datasets: (1) Leukemia (2) Colon cancer (3) Brain tumors and (4) NCI cancer cell lines. The models gave class prediction with markedly reduced error rates compared to other class prediction approaches, and the importance of feature selection on microarray data analysis was also emphasized. CONCLUSIONS: Our models identify marker genes with predictive potential, often better than other available methods in the literature. The models are potentially useful for medical diagnostics and may reveal some insights into cancer classification. Additionally, we illustrated two limitations in tumor classification from microarray data related to the biology underlying the data, in terms of (1) the class size of data, and (2) the internal structure of classes. These limitations are not specific for the classification models used

    Methods for protein complex prediction and their contributions towards understanding the organization, function and dynamics of complexes

    Get PDF
    Complexes of physically interacting proteins constitute fundamental functional units responsible for driving biological processes within cells. A faithful reconstruction of the entire set of complexes is therefore essential to understand the functional organization of cells. In this review, we discuss the key contributions of computational methods developed till date (approximately between 2003 and 2015) for identifying complexes from the network of interacting proteins (PPI network). We evaluate in depth the performance of these methods on PPI datasets from yeast, and highlight challenges faced by these methods, in particular detection of sparse and small or sub- complexes and discerning of overlapping complexes. We describe methods for integrating diverse information including expression profiles and 3D structures of proteins with PPI networks to understand the dynamics of complex formation, for instance, of time-based assembly of complex subunits and formation of fuzzy complexes from intrinsically disordered proteins. Finally, we discuss methods for identifying dysfunctional complexes in human diseases, an application that is proving invaluable to understand disease mechanisms and to discover novel therapeutic targets. We hope this review aptly commemorates a decade of research on computational prediction of complexes and constitutes a valuable reference for further advancements in this exciting area.Comment: 1 Tabl

    Development of computations in bioscience and bioinformatics and its application: review of the Symposium of Computations in Bioinformatics and Bioscience (SCBB06)

    Get PDF
    The first symposium of computations in bioinformatics and bioscience (SCBB06) was held in Hangzhou, China on June 21–22, 2006. Twenty-six peer-reviewed papers were selected for publication in this special issue of BMC Bioinformatics. These papers cover a broad range of topics including bioinformatics theories, algorithms, applications and tool development. The main technical topics contain gene expression analysis, sequence analysis, genome analysis, phylogenetic analysis, gene function prediction, molecular interaction and system biology, genetics and population study, immune strategy, protein structure prediction and proteomics

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    NFI: a neuro-fuzzy inference method for transductive reasoning

    Get PDF
    This paper introduces a novel neural fuzzy inference method - NFI for transductive reasoning systems. NFI develops further some ideas from DENFIS - dynamic neuro-fuzzy inference systems for both online and offline time series prediction tasks. While inductive reasoning is concerned with the development of a model (a function) to approximate data in the whole problem space (induction), and consecutively - using this model to predict output values for a new input vector (deduction), in transductive reasoning systems a local model is developed for every new input vector, based on some closest to this vector data from an existing database (also generated from an existing model). NFI is compared with both inductive connectionist systems (e.g., MLP, DENFIS) and transductive reasoning systems (e.g., K-NN) on three case study prediction/identification problems. The first one is a prediction task on Mackey Glass time series; the second one is a classification on Iris data; and the last one is a real medical decision support problem of estimating the level of renal function of a patient, based on measured clinical parameters for the purpose of their personalised treatment. The case studies have demonstrated better accuracy obtained with the use of the NFI transductive reasoning in comparison with the inductive reasoning systems. © 2005 IEEE

    Visual and computational analysis of structure-activity relationships in high-throughput screening data

    Get PDF
    Novel analytic methods are required to assimilate the large volumes of structural and bioassay data generated by combinatorial chemistry and high-throughput screening programmes in the pharmaceutical and agrochemical industries. This paper reviews recent work in visualisation and data mining that can be used to develop structure-activity relationships from such chemical/biological datasets
    corecore