6,186 research outputs found

    Systematic Error-Correcting Codes for Rank Modulation

    Get PDF
    The rank-modulation scheme has been recently proposed for efficiently storing data in nonvolatile memories. Error-correcting codes are essential for rank modulation, however, existing results have been limited. In this work we explore a new approach, \emph{systematic error-correcting codes for rank modulation}. Systematic codes have the benefits of enabling efficient information retrieval and potentially supporting more efficient encoding and decoding procedures. We study systematic codes for rank modulation under Kendall's τ\tau-metric as well as under the ℓ∞\ell_\infty-metric. In Kendall's τ\tau-metric we present [k+2,k,3][k+2,k,3]-systematic codes for correcting one error, which have optimal rates, unless systematic perfect codes exist. We also study the design of multi-error-correcting codes, and provide two explicit constructions, one resulting in [n+1,k+1,2t+2][n+1,k+1,2t+2] systematic codes with redundancy at most 2t+12t+1. We use non-constructive arguments to show the existence of [n,k,n−k][n,k,n-k]-systematic codes for general parameters. Furthermore, we prove that for rank modulation, systematic codes achieve the same capacity as general error-correcting codes. Finally, in the ℓ∞\ell_\infty-metric we construct two [n,k,d][n,k,d] systematic multi-error-correcting codes, the first for the case of d=O(1)d=O(1), and the second for d=Θ(n)d=\Theta(n). In the latter case, the codes have the same asymptotic rate as the best codes currently known in this metric

    Systematic Codes for Rank Modulation

    Get PDF
    The goal of this paper is to construct systematic error-correcting codes for permutations and multi-permutations in the Kendall's Ï„\tau-metric. These codes are important in new applications such as rank modulation for flash memories. The construction is based on error-correcting codes for multi-permutations and a partition of the set of permutations into error-correcting codes. For a given large enough number of information symbols kk, and for any integer tt, we present a construction for (k+r,k){(k+r,k)} systematic tt-error-correcting codes, for permutations from Sk+rS_{k+r}, with less redundancy symbols than the number of redundancy symbols in the codes of the known constructions. In particular, for a given tt and for sufficiently large kk we can obtain r=t+1r=t+1. The same construction is also applied to obtain related systematic error-correcting codes for multi-permutations.Comment: to be presented ISIT201

    Systematic Error-Correcting Codes for Rank Modulation

    Get PDF
    The rank modulation scheme has been proposed recently for efficiently writing and storing data in nonvolatile memories. Error-correcting codes are very important for rank modulation, and they have attracted interest among researchers. In this work, we explore a new approach, systematic error-correcting codes for rank modulation. In an (n,k) systematic code, we use the permutation induced by the levels of n cells to store data, and the permutation induced by the first k cells (k < n) has a one-to-one mapping to information bits. Systematic codes have the benefits of enabling efficient information retrieval and potentially supporting more efficient encoding and decoding procedures. We study systematic codes for rank modulation equipped with the Kendall's τ-distance. We present (k + 2, k) systematic codes for correcting one error, which have optimal sizes unless perfect codes exist. We also study the design of multi-error-correcting codes, and prove that for any 2 ≤ k < n, there always exists an (n, k) systematic code of minimum distance n-k. Furthermore, we prove that for rank modulation, systematic codes achieve the same capacity as general error-correcting codes

    Limited-Magnitude Error-Correcting Gray Codes for Rank Modulation

    Full text link
    We construct Gray codes over permutations for the rank-modulation scheme, which are also capable of correcting errors under the infinity-metric. These errors model limited-magnitude or spike errors, for which only single-error-detecting Gray codes are currently known. Surprisingly, the error-correcting codes we construct achieve a better asymptotic rate than that of presently known constructions not having the Gray property, and exceed the Gilbert-Varshamov bound. Additionally, we present efficient ranking and unranking procedures, as well as a decoding procedure that runs in linear time. Finally, we also apply our methods to solve an outstanding issue with error-detecting rank-modulation Gray codes (snake-in-the-box codes) under a different metric, the Kendall Ï„\tau-metric, in the group of permutations over an even number of elements S2nS_{2n}, where we provide asymptotically optimal codes.Comment: Revised version for journal submission. Additional results include more tight auxiliary constructions, a decoding shcema, ranking/unranking procedures, and application to snake-in-the-box codes under the Kendall tau-metri

    Space-time coding techniques with bit-interleaved coded modulations for MIMO block-fading channels

    Full text link
    The space-time bit-interleaved coded modulation (ST-BICM) is an efficient technique to obtain high diversity and coding gain on a block-fading MIMO channel. Its maximum-likelihood (ML) performance is computed under ideal interleaving conditions, which enables a global optimization taking into account channel coding. Thanks to a diversity upperbound derived from the Singleton bound, an appropriate choice of the time dimension of the space-time coding is possible, which maximizes diversity while minimizing complexity. Based on the analysis, an optimized interleaver and a set of linear precoders, called dispersive nucleo algebraic (DNA) precoders are proposed. The proposed precoders have good performance with respect to the state of the art and exist for any number of transmit antennas and any time dimension. With turbo codes, they exhibit a frame error rate which does not increase with frame length.Comment: Submitted to IEEE Trans. on Information Theory, Submission: January 2006 - First review: June 200

    Product Construction of Affine Codes

    Full text link
    Binary matrix codes with restricted row and column weights are a desirable method of coded modulation for power line communication. In this work, we construct such matrix codes that are obtained as products of affine codes - cosets of binary linear codes. Additionally, the constructions have the property that they are systematic. Subsequently, we generalize our construction to irregular product of affine codes, where the component codes are affine codes of different rates.Comment: 13 pages, to appear in SIAM Journal on Discrete Mathematic
    • …
    corecore