2,871 research outputs found

    An Overview of Multi-Attribute Decision Making (MADM) Vertical Handover Using Systematic Mapping

    Get PDF
    The evolution of infotainment industries yet the advancement of cellular gadgets such as smartphones, tablets, and laptop had increased the request on cellular traffic demands. As a result, a Heterogeneous Wireless Network (HWN) has been introduced to fulfil users requests in having seamless mobility and better Quality of Services (QoS) for the users. A lot of research works have been done in order to provide a seamless connection to the users. Even though a lot of methods have been proposed, a Multi-Attribute Decision Making (MADM) has been seemed like a promising way due to its ability to evaluate many attributes simultaneously. Previously, many reviews based on MADM methods in a Heterogeneous Wireless Network provides a details review which required researchers time in order to determine the possible potential areas to be explored. Therefore, in this study, we present an overview of the MADM method in performing vertical handover via a systematic mapping method. This will enable future researchers to identify the trends and research opportunities within this area. This mapping study analysed 30 papers. Results from the study show eight main potential research issues can be explored by researchers, including normalisation, criteria weighting, ranking abnormality, network selection, and performance comparison between MADM algorithms, network selection for a group of calls, mobility patterns and handover triggering

    Collective Value QoS: A Performance Measure Framework for Distributed Heterogeneous Networks

    Get PDF
    When users' tasks in a distributed heterogeneous computing environment are allocated resources, and the total demand placed on system resources by the tasks, for a given interval of time, exceeds the resources available, some tasks will receive degraded service, receive no service at all, or may be dropped from the system. One part of a measure to quantify the success of a resource management system (RMS) in such an environment is the collective value of the tasks completed during an interval of time, as perceived by the user, the application, or the policy maker. For the case where a task may be a data communication request, the collective value of data communication requests that are satisfied during an interval of time is measured. The Flexible Integrated System Capability (FISC) measure defined here is one way of obtaining a multi-dimensional measure for quantifying this collective value. While the FISC measure itself is not sufficient for scheduling purposes, it can be a critical part of a scheduler or a scheduling heuristic. The primary contribution of this work is providing a way to measure the collective value accrued by an RMS using a broad range of attributes and to construct a flexible framework that can be extended for particular problem domains.DARPA/ITO Quorum ProgramDARPA/ISO BADD ProgramOffice of Naval Research under ONR grant number N00014-97-1-0804DARPA/ITO AICE program under contract numbers DABT63-99-C-0010 and DABT63-99-C-0012DARPA/ITO Quorum ProgramDARPA/ISO BADD ProgramOffice of Naval Research under ONR grant number N00014-97-1-0804DARPA/ITO AICE program under contract numbers DABT63-99-C-0010 and DABT63-99-C-0012Approved for public release; distribution is unlimited
    corecore