1,514 research outputs found

    Turbo-Detected Unequal Protection MPEG-4 Wireless Video Telephony using Multi-Level Coding, Trellis Coded Modulation and Space-Time Trellis Coding

    No full text
    Most multimedia source signals are capable of tolerating lossy, rather than lossless delivery to the human eye, ear and other human sensors. The corresponding lossy and preferably low-delay multimedia source codecs however exhibit unequal error sensitivity, which is not the case for Shannon’s ideal entropy codec. This paper proposes a jointly optimised turbo transceiver design capable of providing unequal error protection for MPEG-4 coding aided wireless video telephony. The transceiver investigated consists of space-time trellis coding (STTC) invoked for the sake of mitigating the effects of fading, in addition to bandwidth efficient trellis coded modulation or bit-interleaved coded modulation, combined with a multi-level coding scheme employing either two different-rate non-systematic convolutional codes (NSCs) or two recursive systematic convolutional codes for yielding a twin-class unequal-protection. A single-class protection based benchmark scheme combining STTC and NSC is used for comparison with the unequal-protection scheme advocated. The video performance of the various schemes is evaluated when communicating over uncorrelated Rayleigh fading channels. It was found that the proposed scheme requires about 2.8 dBs lower transmit power than the benchmark scheme in the context of the MPEG-4 videophone transceiver at a similar decoding complexity

    Integrated Wireless Multimedia Turbo-Transceiver Design Approaching the Rayleigh Channel's Capacity: Interpreting Shannon's Lessons in the Turbo-Era

    No full text
    Claude Shannon's pioneering work quantified the performance limits of communications systems operating over classic wireline Gaussian channels. However, his source and channel coding theorems were derived for a range of idealistic conditions, which may not hold in low-delay, interactive wireless multimedia communications. Firstly, Shannon's ideal lossless source encoder, namely the entropy encoder may have an excessive codeword length, hence exhibiting a high delay and a high error sensitivity. However, in practice most multimedia source signals are capable of tolerating lossy, rather than lossless delivery to the human eye, ear and other human sensors. The corresponding lossy and preferably low-delay multimedia source codecs however exhibit unequal error sensitivity, which is not the case for Shannon's ideal entropy codec. There are further numerous differences between the Shannonian lessons originally outlined for Gaussian channels and their ramifications for routinely encountered dispersive wireless channels, where typically bursty, rather than random errors are encountered. This paper elaborates on these intriguiging lessons in the context of a few turbo-transceiver design examples, using a jointly optimised turbo transceiver capable of providing unequal error protection in the context of MPEG-4 aided wireless video telephony. The transceiver investigated consists of Space-Time Trellis Coding (STTC) invoked for the sake of mitigating the effects of fading, Trellis Coded Modulation (TCM) or Bit-Interleaved Coded Modulation (BICM) as well as two different-rate Non-Systematic Convolutional codes (NSCs) or Recursive Systematic Convolutional codes (RSCs). A single-class protection based benchmarker scheme combining STTC and NSC is used for comparison with the unequal-protection scheme advocated. The video performance of the various schemes is evaluated when communicating over uncorrelated Rayleigh fading channels. It was found that the achievable performance of the proposed scheme is within 0.99~dB of the corresponding capacity of the Rayleigh fading channel

    Turbo-detected unequal protection audio and speech transceivers using serially concatenated convolutional codes, trellis coded modulation and space-time trellis coding

    No full text
    The MPEG-4 TwinVQ audio codec and the AMR-WB speech codec are investigated in the context of a jointly optimised turbo transceiver capable of providing unequal error protection. The transceiver advocated consists of serially concatenated Space-Time Trellis Coding (STTC), Trellis Coded Modulation (TCM) and two different-rate Non-Systematic Convolutional codes (NSCs) used for unequal error protection. A benchmarker scheme combining STTC and a single-class protection NSC is used for comparison with the proposed scheme. The audio and speech performance of both schemes is evaluated, when communicating over uncorrelated Rayleigh fading channels. An Eb/N0E_b/N_0 value of about 2.5 (3.5)~dB is required for near-unimpaired audio (speech) transmission, which is about 3.07 (4.2)~dB from the capacity of the system

    Iterative source and channel decoding relying on correlation modelling for wireless video transmission

    No full text
    Since joint source-channel decoding (JSCD) is capable of exploiting the residual redundancy in the source signals for improving the attainable error resilience, it has attracted substantial attention. Motivated by the principle of exploiting the source redundancy at the receiver, in this treatise we study the application of iterative source channel decoding (ISCD) aided video communications, where the video signal is modelled by a first-order Markov process. Firstly, we derive reduced-complexity formulas for the first-order Markov modelling (FOMM) aided source decoding. Then we propose a bit-based iterative horizontal vertical scanline model (IHVSM) aided source decoding algorithm, where a horizontal and a vertical source decoder are employed for exchanging their extrinsic information using the iterative decoding philosophy. The iterative IHVSM aided decoder is then employed in a forward error correction (FEC) encoded uncompressed video transmission scenario, where the IHVSM and the FEC decoder exchange softbit-information for performing turbo-like ISCD for the sake of improving the reconstructed video quality. Finally, we benchmark the attainable system performance against a near-lossless H.264/AVC video communication system and the existing FOMM based softbit source decoding scheme, where The financial support of the RC-UK under the auspices of the India-UK Advanced Technology Centre (IU-ATC) and that of the EU under the CONCERTO project as well as that of the European Research Council’s Advanced Fellow Grant is gratefully acknowledged. The softbit decoding is performed by a one-dimensional Markov model aided decoder. Our simulation results show that Eb=N0 improvements in excess of 2.8 dB are attainable by the proposed technique in uncompressed video applications

    Error Resilience Performance Evaluation of a Distributed Video Codec

    Get PDF
    Distributed Video Coding (DVC), one of the most active research field in the video coding community, is based on the combination of Slepian-Wolf coding techniques with the idea of performing the prediction at the decoder side rather than at the encoder side. Besides its main property, which is flexible allocation of computational complexity between encoder and decoder, the distributed approach has other interesting properties. One of the most promising DVC characteristics is its intrinsic robustness to transmission errors. In this work we have evaluated the error resilience performance of a video codec based on the DVC scheme proposed by Stanford, and we have carried out a preliminary comparison with traditional H.264 encoding, showing that at high error probabilities and high bitrates the distributed approach can also outperform the traditional one

    Turbo Decoding and Detection for Wireless Applications

    Get PDF
    A historical perspective of turbo coding and turbo transceivers inspired by the generic turbo principles is provided, as it evolved from Shannon’s visionary predictions. More specifically, we commence by discussing the turbo principles, which have been shown to be capable of performing close to Shannon’s capacity limit. We continue by reviewing the classic maximum a posteriori probability decoder. These discussions are followed by studying the effect of a range of system parameters in a systematic fashion, in order to gauge their performance ramifications. In the second part of this treatise, we focus our attention on the family of iterative receivers designed for wireless communication systems, which were partly inspired by the invention of turbo codes. More specifically, the family of iteratively detected joint coding and modulation schemes, turbo equalization, concatenated spacetime and channel coding arrangements, as well as multi-user detection and three-stage multimedia systems are highlighted
    corecore