19,552 research outputs found

    Guidelines for a Dynamic Ontology - Integrating Tools of Evolution and Versioning in Ontology

    Full text link
    Ontologies are built on systems that conceptually evolve over time. In addition, techniques and languages for building ontologies evolve too. This has led to numerous studies in the field of ontology versioning and ontology evolution. This paper presents a new way to manage the lifecycle of an ontology incorporating both versioning tools and evolution process. This solution, called VersionGraph, is integrated in the source ontology since its creation in order to make it possible to evolve and to be versioned. Change management is strongly related to the model in which the ontology is represented. Therefore, we focus on the OWL language in order to take into account the impact of the changes on the logical consistency of the ontology like specified in OWL DL

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Rodin: an open toolset for modelling and reasoning in Event-B

    No full text
    Event-B is a formal method for system-level modelling and analysis. Key features of Event-B are the use of set theory as a modelling notation, the use of refinement to represent systems at different abstraction levels and the use of mathematical proof to verify consistency between refinement levels. In this article we present the Rodin modelling tool that seamlessly integrates modelling and proving. We outline how the Event-B language was designed to facilitate proof and how the tool has been designed to support changes to models while minimising the impact of changes on existing proofs. We outline the important features of the prover architecture and explain how well-definedness is treated. The tool is extensible and configurable so that it can be adapted more easily to different application domains and development methods

    A Systematic Review of Learning based Notion Change Acceptance Strategies for Incremental Mining

    Get PDF
    The data generated contemporarily from different communication environments is dynamic in content different from the earlier static data environments. The high speed streams have huge digital data transmitted with rapid context changes unlike static environments where the data is mostly stationery. The process of extracting, classifying, and exploring relevant information from enormous flowing and high speed varying streaming data has several inapplicable issues when static data based strategies are applied. The learning strategies of static data are based on observable and established notion changes for exploring the data whereas in high speed data streams there are no fixed rules or drift strategies existing beforehand and the classification mechanisms have to develop their own learning schemes in terms of the notion changes and Notion Change Acceptance by changing the existing notion, or substituting the existing notion, or creating new notions with evaluation in the classification process in terms of the previous, existing, and the newer incoming notions. The research in this field has devised numerous data stream mining strategies for determining, predicting, and establishing the notion changes in the process of exploring and accurately predicting the next notion change occurrences in Notion Change. In this context of feasible relevant better knowledge discovery in this paper we have given an illustration with nomenclature of various contemporarily affirmed models of benchmark in data stream mining for adapting the Notion Change

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Security Evaluation of Support Vector Machines in Adversarial Environments

    Full text link
    Support Vector Machines (SVMs) are among the most popular classification techniques adopted in security applications like malware detection, intrusion detection, and spam filtering. However, if SVMs are to be incorporated in real-world security systems, they must be able to cope with attack patterns that can either mislead the learning algorithm (poisoning), evade detection (evasion), or gain information about their internal parameters (privacy breaches). The main contributions of this chapter are twofold. First, we introduce a formal general framework for the empirical evaluation of the security of machine-learning systems. Second, according to our framework, we demonstrate the feasibility of evasion, poisoning and privacy attacks against SVMs in real-world security problems. For each attack technique, we evaluate its impact and discuss whether (and how) it can be countered through an adversary-aware design of SVMs. Our experiments are easily reproducible thanks to open-source code that we have made available, together with all the employed datasets, on a public repository.Comment: 47 pages, 9 figures; chapter accepted into book 'Support Vector Machine Applications

    Formalization and Validation of Safety-Critical Requirements

    Full text link
    The validation of requirements is a fundamental step in the development process of safety-critical systems. In safety critical applications such as aerospace, avionics and railways, the use of formal methods is of paramount importance both for requirements and for design validation. Nevertheless, while for the verification of the design, many formal techniques have been conceived and applied, the research on formal methods for requirements validation is not yet mature. The main obstacles are that, on the one hand, the correctness of requirements is not formally defined; on the other hand that the formalization and the validation of the requirements usually demands a strong involvement of domain experts. We report on a methodology and a series of techniques that we developed for the formalization and validation of high-level requirements for safety-critical applications. The main ingredients are a very expressive formal language and automatic satisfiability procedures. The language combines first-order, temporal, and hybrid logic. The satisfiability procedures are based on model checking and satisfiability modulo theory. We applied this technology within an industrial project to the validation of railways requirements
    corecore