28 research outputs found

    Multi-Omics Integration-Based Prioritisation of Competing Endogenous RNA Regulation Networks in Small Cell Lung Cancer : Molecular Characteristics and Drug Candidates

    Get PDF
    BackgroundThe competing endogenous RNA (ceRNA) network-mediated regulatory mechanisms in small cell lung cancer (SCLC) remain largely unknown. This study aimed to integrate multi-omics profiles, including the transcriptome, regulome, genome and pharmacogenome profiles, to elucidate prioritised ceRNA characteristics, pathways and drug candidates in SCLC. MethodWe determined the plasma messenger RNA (mRNA), microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) expression levels using whole-transcriptome sequencing technology in our SCLC plasma cohort. Significantly expressed plasma mRNAs were then overlapped with the Gene Expression Omnibus (GEO) tissue mRNA data (GSE 40275, SCLC tissue cohort). Next, we applied a multistep multi-omics (transcriptome, regulome, genome and pharmacogenome) integration analysis to first construct the network and then to identify the lncRNA/circRNA-miRNA-mRNA ceRNA characteristics, genomic alterations, pathways and drug candidates in SCLC. ResultsThe multi-omics integration-based prioritisation of SCLC ceRNA regulatory networks consisted of downregulated mRNAs (CSF3R/GAA), lncRNAs (AC005005.4-201/DLX6-AS1-201/NEAT1-203) and circRNAs (hsa_HLA-B_1/hsa_VEGFC_8) as well as upregulated miRNAs (hsa-miR-4525/hsa-miR-6747-3p). lncRNAs (lncRNA-AC005005.4-201 and NEAT1-203) and circRNAs (circRNA-hsa_HLA-B_1 and hsa_VEGFC_8) may regulate the inhibited effects of hsa-miR-6747-3p for CSF3R expression in SCLC, while lncRNA-DLX6-AS1-201 or circRNA-hsa_HLA-B_1 may neutralise the negative regulation of hsa-miR-4525 for GAA in SCLC. CSF3R and GAA were present in the genomic alteration, and further identified as targets of FavId and Trastuzumab deruxtecan, respectively. In the SCLC-associated pathway analysis, CSF3R was involved in the autophagy pathways, while GAA was involved in the glucose metabolism pathways. ConclusionsWe identified potential lncRNA/cirRNA-miRNA-mRNA ceRNA regulatory mechanisms, pathways and promising drug candidates in SCLC, providing novel potential diagnostics and therapeutic targets in SCLC.Peer reviewe

    Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance.

    Get PDF
    Early-stage detection of leukemia is a critical determinant for successful treatment of the disease and can increase the survival rate of leukemia patients. The factors limiting the current screening approaches to leukemia include low sensitivity and specificity, high costs, and a low participation rate. An approach based on novel and innovative biomarkers with high accuracy from peripheral blood offers a comfortable and appealing alternative to patients, potentially leading to a higher participation rate.Recently, non-coding RNAs due to their involvement in vital oncogenic processes such as differentiation, proliferation, migration, angiogenesis and apoptosis have attracted much attention as potential diagnostic and prognostic biomarkers in leukemia. Emerging lines of evidence have shown that the mutational spectrum and dysregulated expression of non-coding RNA genes are closely associated with the development and progression of various cancers, including leukemia. In this review, we highlight the expression and functional roles of different types of non-coding RNAs in leukemia and discuss their potential clinical applications as diagnostic or prognostic biomarkers and therapeutic targets

    Noncoding RNA in cholangiocarcinoma

    Get PDF
    Cholangiocarcinomas (CCAs) are tumors with a dismal prognosis. Early diagnosis is a key challenge because of the lack of specific symptoms, and the curability rate is low due to the difficulty in achieving a radical resection and the intrinsic chemoresistance of CCA cells. Noncoding RNAs (ncRNAs) are transcripts that are not translated into proteins but exert their functional role by regulating the transcription and translation of other genes. The discovery of the first ncRNA dates back to 1993 when the microRNA (miRNA) lin-4 was discovered in Caenorhabditis elegans. Only 10 years later, miRNAs were shown to play an oncogenic role in cancer cells and within 20 years miRNA therapeutics were tested in humans. Here, the authors review the latest evidence for a role for ncRNAs in CCA and discuss the promise and challenges associated with the introduction of ncRNAs into clinical practice

    Rheumatoid Arthritis

    Get PDF
    Rheumatoid arthritis (RA) is a chronic autoimmune disease generating joint pain and damage in which inflammation plays a major role. RA joints are inflamed and stiff. Symptoms include joint swelling and warmth causing fatigue affecting life’s health-related quality. Still, there are many other medical conditions that can also be associated with your symptoms and signs. This book is not a substitute for a diagnosis from a healthcare provider. Yet, understanding your symptoms and signs and educating yourself about health conditions is important and can contribute to having the healthiest possible life. Herein, Professor Hechmi Toumi offers an edited volume with detailed new information on RA pathogenesis and explains both approaches and treatment options: recent clinical research and traditional methods

    Role of miRNAs in Cancer

    Get PDF
    MicroRNAs are the best representatives of the non-coding part of the genome and their functions are mostly linked to their target genes. During the process of carcinogenesis, both dysregulation of microRNAs and their target genes can explain the development of the disease. However, most of the target genes of microRNAs have not yet been elucidated. In this book, we add new information related to the functions of microRNAs in various tumors and their associated targetome

    Overcoming drug resistance: targeting the BCL-2 family and the long non-coding RNA HCP5 in medulloblastoma and colorectal cancer

    Get PDF
    Colorectal cancer (CRC) is one of the most common cancers in the UK and medulloblastoma is a common cancer found in children. While there has been a progressive improvement in treatment outcomes, success has been marred by drug resistance and severe side effects. Therefore, this project focused on two aspects of chemotherapeutic drug resistance, the first using the antimitotic agent vincristine in combination with inhibitors of the anti-apoptotic Bcl-2 family proteins, while the second investigated the role of the long non-coding RNA (lncRNA), HCP5 in the resistance of cells to genotoxic agents. In the first part, three medulloblastoma cell lines (DAOY, MB03, ONS76) were analysed for the expression of Bcl-xL and ONS76 cells found to have the highest level of this anti-apoptotic protein. Subsequent results indicated that Bcl-xL encourages mitotic slippage and stemness and that knockdown of Bcl-xL in the high expressing ONS76 cells, reduces these and sensitizes the cells to the anti-mitotic agent vincristine. Thus, pharmacological inhibition of Bcl-xL should sensitize medulloblastoma cells to low doses of vincristine. Regarding the lncRNA HCP5, results showed that HCP5 was generally more highly expressed in a panel of CRC cell lines than the three medulloblastoma cell lines, corroborating data from an in-silico analysis for the corresponding tumours. One function of HCP5 is to translocate the multifunctional YB-1 protein from the cytoplasm to the nucleus where it carries out many of its functions. Knockdown of HCP5 followed by immunofluorescence indicated a reduction in the amount of YB-1 in the nucleus, confirming this function. Subsequently, HCP5 silencing sensitized all cell lines tested to the DNA damaging agents, cisplatin, oxaliplatin and tert-butyl hydroperoxide and also resulted in an increase in double-strand breaks as determined by H2AX formation. Finally, fluorescence activated cell sorting using Annexin V and propidium iodide confirmed a decrease in cell viability in HCP5 knockdown cells following treatment with genotoxic agents and that this was mirrored by an increased apoptotic fraction. Together, these studies indicate the possibilities of using novel therapeutics to increase the functionality of existing treatments to combat acquired drug resistance in cancer patients

    MicroRNA in Solid Tumor and Hematological Diseases

    Get PDF
    MicroRNAs (miRNAs), which are a type of short non-coding RNA, are involved in number of processes, such as differentiation, development, inflammation, immune response, and cancer. miRNAs, which act as oncogenes or tumor suppressor genes, can control and regulate the translation and stability of target messenger RNA, contributing to cancer pathogenesis. Despite the progress that has been made in discovering the mechanisms of how miRNAs function in tumors, many questions and aspects of miRNA biology and processing still remain to be determined. This Special Issue, titled “MicroRNA in Solid Tumor and Hematological Diseases”, provides a panorama of the existing knowledge gaps and potential uses of microRNAs to predict clinical outcome or response to therapies and provides evidence to explain their role as biomarkers to modulate the biological pathways that are critical for cancer development and progression. It includes eleven peer-reviewed papers that cover the role of microRNAs in different tumor types and their potential applications in diagnosis and clinical approaches
    corecore