285,091 research outputs found

    A Detailed Investigation into Low-Level Feature Detection in Spectrogram Images

    Get PDF
    Being the first stage of analysis within an image, low-level feature detection is a crucial step in the image analysis process and, as such, deserves suitable attention. This paper presents a systematic investigation into low-level feature detection in spectrogram images. The result of which is the identification of frequency tracks. Analysis of the literature identifies different strategies for accomplishing low-level feature detection. Nevertheless, the advantages and disadvantages of each are not explicitly investigated. Three model-based detection strategies are outlined, each extracting an increasing amount of information from the spectrogram, and, through ROC analysis, it is shown that at increasing levels of extraction the detection rates increase. Nevertheless, further investigation suggests that model-based detection has a limitation—it is not computationally feasible to fully evaluate the model of even a simple sinusoidal track. Therefore, alternative approaches, such as dimensionality reduction, are investigated to reduce the complex search space. It is shown that, if carefully selected, these techniques can approach the detection rates of model-based strategies that perform the same level of information extraction. The implementations used to derive the results presented within this paper are available online from http://stdetect.googlecode.com

    Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation

    Full text link
    Remote sensing (RS) image retrieval is of great significant for geological information mining. Over the past two decades, a large amount of research on this task has been carried out, which mainly focuses on the following three core issues: feature extraction, similarity metric and relevance feedback. Due to the complexity and multiformity of ground objects in high-resolution remote sensing (HRRS) images, there is still room for improvement in the current retrieval approaches. In this paper, we analyze the three core issues of RS image retrieval and provide a comprehensive review on existing methods. Furthermore, for the goal to advance the state-of-the-art in HRRS image retrieval, we focus on the feature extraction issue and delve how to use powerful deep representations to address this task. We conduct systematic investigation on evaluating correlative factors that may affect the performance of deep features. By optimizing each factor, we acquire remarkable retrieval results on publicly available HRRS datasets. Finally, we explain the experimental phenomenon in detail and draw conclusions according to our analysis. Our work can serve as a guiding role for the research of content-based RS image retrieval

    Feature Extraction Techniques in Medical Imaging: A Systematic Review

    Get PDF
    With the surge in the development of various applications in the field of Computer Vision and Digital Image Processing, a significant amount of medical pictures are being produced. Thus, the patient-specific scan pictures represent the boundless volume of data that requires careful organization and supervision to assist clinical decision support systems. Now that retrieval, classification, segmentation, and other procedures have been completed, these devices assist doctors to uncover serious illnesses including skin conditions, tumors, and cancer. This imaging largely depends on characteristics to detect the afflicted region and perform the diagnosis visually. The authors of this paper present an overview of numerous feature extraction approaches used to extract features from medical images obtained via different modalities, but only used a handful of these techniques for this job and provided the findings

    Transient thermography for flaw detection in friction stir welding : a machine learning approach

    Get PDF
    A systematic computational method to simulate and detect sub-surface flaws, through non-destructive transient thermography, in aluminium sheets and friction stir welded sheets is proposed. The proposed method relies on feature extraction methods and a data driven machine learning modelling structure. In this work, we propose the use of a multi-layer perceptron feed-forward neural-network with feature extraction methods to improve the flaw-probing depth of transient thermography inspection. Furthermore, for the first time, we propose Thermographic Signal Linear Modelling (TSLM), a hyper-parameterfree feature extraction technique for transient thermography. The new feature extraction and modelling framework was tested with out-of-sample experimental transient thermography data and results show effectiveness in sub-surface flaw detection of up to 2.3 mm deep in aluminium sheets (99.8 % true positive rate, 92.1 % true negative rate) and up to 2.2 mm deep in friction stir welds (97.2 % true positive rate, 87.8 % true negative rate)

    Leveraging Metadata for Extracting Robust Multi-Variate Temporal Features

    Get PDF
    abstract: In recent years, there are increasing numbers of applications that use multi-variate time series data where multiple uni-variate time series coexist. However, there is a lack of systematic of multi-variate time series. This thesis focuses on (a) defining a simplified inter-related multi-variate time series (IMTS) model and (b) developing robust multi-variate temporal (RMT) feature extraction algorithm that can be used for locating, filtering, and describing salient features in multi-variate time series data sets. The proposed RMT feature can also be used for supporting multiple analysis tasks, such as visualization, segmentation, and searching / retrieving based on multi-variate time series similarities. Experiments confirm that the proposed feature extraction algorithm is highly efficient and effective in identifying robust multi-scale temporal features of multi-variate time series.Dissertation/ThesisM.S. Computer Science 201

    Near ground level sensing for spatial analysis of vegetation

    Get PDF
    Measured changes in vegetation indicate the dynamics of ecological processes and can identify the impacts from disturbances. Traditional methods of vegetation analysis tend to be slow because they are labor intensive; as a result, these methods are often confined to small local area measurements. Scientists need new algorithms and instruments that will allow them to efficiently study environmental dynamics across a range of different spatial scales. A new methodology that addresses this problem is presented. This methodology includes the acquisition, processing, and presentation of near ground level image data and its corresponding spatial characteristics. The systematic approach taken encompasses a feature extraction process, a supervised and unsupervised classification process, and a region labeling process yielding spatial information
    • …
    corecore