790 research outputs found

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    SUPER ORTHOGONAL SPACE TIME TRELLIS CODES OVER NAKAGAMI FADING MODEL

    Get PDF
    Performance evaluation of super orthogonal space-time trellis codes for non-frequency selective fading channels & frequency selective fading channels. The analysis is done in presence of fast fading, block fading and quasi-static fading in Rayleigh, and Nakhagami fast fading channels along with comparison. While providing full diversity and full rate, the structure of our new codes allows an increase in the coding gain. Not only does our new SOSTTC outperform the space-time trellis codes in the literature, but it also provides a systematic method for designing space time trellis codes at different rates and for different trellises. Since we have used orthogonal designs as the building blocks in our new SOSTTCs, the complexity of the decoding remains low while full diversity is guaranteed. Codes operating at different rates, up to the highest theoretically possible rate, for different number of states, can be designed by using our optimal set partitioning. In general, new SOSTTCs can provide a tradeoff between rate and coding gain while achieving full diversity

    Turbo space-time coded modulation : principle and performance analysis

    Get PDF
    A breakthrough in coding was achieved with the invention of turbo codes. Turbo codes approach Shannon capacity by displaying the properties of long random codes, yet allowing efficient decoding. Coding alone, however, cannot fully address the problem of multipath fading channel. Recent advances in information theory have revolutionized the traditional view of multipath channel as an impairment. New results show that high gains in capacity can be achieved through the use of multiple antennas at the transmitter and the receiver. To take advantage of these new results in information theory, it is necessary to devise methods that allow communication systems to operate close to the predicted capacity. One such method recently invented is space-time coding, which provides both coding gain and diversity advantage. In this dissertation, a new class of codes is proposed that extends the concept of turbo coding to include space-time encoders as constituent building blocks of turbo codes. The codes are referred to as turbo spacetime coded modulation (turbo-STCM). The motivation behind the turbo-STCM concept is to fuse the important properties of turbo and space-time codes into a unified design framework. A turbo-STCM encoder is proposed, which consists of two space-time codes in recursive systematic form concatenated in parallel. An iterative symbol-by-symbol maximum a posteriori algorithm operating in the log domain is developed for decoding turbo-STCM. The decoder employs two a posteriori probability (APP) computing modules concatenated in parallel; one module for each constituent code. The analysis of turbo-STCM is demonstrated through simulations and theoretical closed-form expressions. Simulation results are provided for 4-PSK and 8-PSK schemes over the Rayleigh block-fading channel. It is shown that the turbo-STCM scheme features full diversity and full coding rate. The significant gain can be obtained in performance over conventional space-time codes of similar complexity. The analytical union bound to the bit error probability is derived for turbo-STCM over the additive white Gaussian noise (AWGN) and the Rayleigh block-fading channels. The bound makes it possible to express the performance analysis of turbo-STCM in terms of the properties of the constituent space-time codes. The union bound is demonstrated for 4-PSK and 8-PSK turbo-STCM with two transmit antennas and one/two receive antennas. Information theoretic bounds such as Shannon capacity, cutoff rate, outage capacity and the Fano bound, are computed for multiantenna systems over the AWGN and fading channels. These bounds are subsequently used as benchmarks for demonstrating the performance of turbo-STCM

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Space-time trellis code construction for fast fading channels

    Full text link
    Abstract—The need for bandwidth- and power-efficient wireless communication systems has raised considerable interest in space-time codes. In this work, we propose a systematic space-time code construction procedure for fast fading channels. The method can be used to design space-time codes for an arbitrary number of transmit antennas and any memoryless modulation. We introduce a new design criterion that ensures full spatial diversity and de-velop the code design method based on this criterion. The flexibil-ity of the proposed approach is demonstrated by designing space-time trellis codes for 2, 3 and 4 transmit antennas with QPSK, 8PSK and 4ASK modulations. I

    Performance of Transmit Antenna Selection in Multiple Input Multiple Output-Orthogonal Space Time Block Code (MIMO-OSTBC) System Joint with Bose-Chaudhuri-Hocquenghem (BCH)-Turbo Code (TC) in Rayleigh Fading Channel

    Get PDF
    To enhancing the performance of spatial modulation (SM) systems TAS (Transmit antenna selection) technique need to be essential. This TAS is an effective technique for reducing the Multiple Input Multiple Output (MIMO) systems computational difficulty and Bit error rate (BER) can increase remarkably by various TAS algorithms. But these selection methods cannot provide code gain, so it is essential to join the TAS with external code to obtain code gain advantages in BER. In some existing work, the improved BER has been perceived by joining Forward Error Correction Code (FEC) and Space Time Block Code (STBC) for MIMO systems provided greater code gain. A multiple TAS-OSTBC technique with new integration of Bose–Chaudhuri–Hocquenghem (BCH)-Turbo code (TC) is proposed in our paper. With external BCH code in sequence with the inner Turbo code, the TAS-OSTBC system is joining. This combination can provide increasing code gain and the effective advantages of the TAS-OSTBC system. To perform the system analysis Rayleigh channel is utilized. In the case with multiple TAS-OSTBC systems, better performance can provide by this new joint of the BCH-Turbo compared to the conventional Turbo code for the Rayleigh fading

    Space-Time Codes Concatenated with Turbo Codes over Fading Channels

    Get PDF
    The uses of space-time code (STC) and iterative processing have enabled robust communications over fading channels at previously unachievable signal-to-noise ratios. Maintaining desired transmission rate while improving the diversity from STC is challenging, and the performance of the STC suffers considerably due to lack of channel state information (CSI). This dissertation research addresses issues of considerable importance in the design of STC with emphasis on efficient concatenation of channel coding and STC with theoretical bound derivation of the proposed schemes, iterative space-time trellis coding (STTC), and differential space-time codes. First, we concatenate space-time block code (STBC) with turbo code for improving diversity gain as well as coding gain. Proper soft-information sharing is indispensable to the iterative decoding process. We derive the required soft outputs from STBC decoders for passing to outer turbo code. Traditionally, the performance of STBC schemes has been evaluated under perfect channel estimation. For fast time-varying channel, obtaining the CSI is tedious if not impossible. We introduce a scheme of calculating the CSI at the receiver from the received signal without the explicit channel estimation. The encoder of STTC, which is generally decoded using Viterbi like algorithm, is based on a trellis structure. This trellis structure provides an inherent advantage for the STTC scheme that an iterative decoding is feasible with the minimal addition computational complexity. An iteratively decoded space-time trellis coding (ISTTC) is proposed in this dissertation, where the STTC schemes are used as constituent codes of turbo code. Then, the performance upper bound of the proposed ISTTC is derived. Finally, for implementing STBC without channel estimation and maintaining trans- mission rate, we concatenate differential space-time block codes (DSTBC) with ISTTC. The serial concatenation of DSTBC or STBC with ISTTC offers improving performance, even without an outer channel code. These schemes reduce the system complexity com- pared to the standalone ISTTC and increase the transmission rate under the same SNR condition. Detailed design procedures of these proposed schemes are analyzed

    Turbo space-time coding for mimo systems : designs and analyses

    Get PDF
    Multiple input multiple output (MIMO) systems can provide high diversity, high data rate or a mix of both, for wireless communications. This dissertation combines both modes and suggests analyses and techniques that advance the state of the art of MIMO systems. Specifically, this dissertation studies turbo space-time coding schemes for MIMO systems. Before the designs of turbo space-time codes are presented, a fundamental tool to analyze and design turbo coding schemes, the extrinsic information transfer (EXIT) chart method, is extended from the binary/nonbinary code case to coded modulation case. This extension prepares the convergence analysis for turbo space-time code. Turbo space-time codes with symbols precoded by randomly chosen unitary time variant linear transformations (TVLT) are investigated in this dissertation. It is shown that turbo codes with TVLT achieve full diversity gain and good coding gain with high probability. The probability that these design goals are not met is shown to vanish exponentially with the Hamming distance between codewords (number of different columns). Hence, exhaustive tests of the rank and the determinant criterion are not required. As an additional benefit of the application of TVLT, with the removal of the constant modulation condition, it is proved that throughput rates achieved by these codes are significantly higher than the rates achievable by conventional space-time codes. Finally, an EXIT chart analysis for turbo space-time codes with TVLT is developed, with application to predicting frame error rate (FER) performance without running full simulation. To increase the data rate of turbo-STC without exponentially increasing the decoding complexity, a multilevel turbo space-time coding scheme with TVLT is proposed. An iterative joint demapping and decoding receiver algorithm is also proposed. For MIMO systems with a large number of transmit antennas, two types of layered turbo space-time (LTST) coding schemes are studied. For systems with low order modulation, a type of LTST with a vertical encoding structure and a low complexity parallel interference cancellation (PlC) receiver is shown to achieve close to capacity performance. For high order modulation, another type of LTST with a horizontal encoding structure, TVLT, and an ordered successive interference cancellation (OSIC) receiver is shown to achieve better performance than conventional layered space-time coding schemes, where ordering is not available in the SIC detection
    corecore